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Abstract
Background and purpose: The novel severe acute respi-
ratory syndrome coronavirus-2 (SARS-CoV-2) has posed a 
serious threat to the global public health. Respiratory failure, 
followed by cardiovascular complications with wide-spread 
endothelial dysfunction and inflammation, is rapidly emerg-
ing as a key threat in COVID-19. ACE-2 receptors are the 
cell-entry gate for SARS-CoV-2. The purpose of the present 
study is to evaluate Valproic Acid (VPA) as a potential drug 
to treat COVID-19 and look into its mechanism of action.

Key results: We demonstrate that VPA-treatment sig-
nificantly reduced ACE-2 expression in endothelial cells. 
VPA-treatment significantly reduced the expression of in-
flammatory cytokines IL-6 along with the endothelial activa-
tion marker ICAM-1.

Conclusions & implications: We provide evidence and 
discuss the plausible mechanism in detail for VPA in its 
uses to prevent and treat COVID-19 in a personalized man-
ner. Our study is expected to entice the scientific and clinical 
society to investigate VPA as a potential therapeutic option 
against COVID-19.
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serious social and economic threat worldwide by infect-
ing over 4 million and killing 276,000 people. The real 
course of the disease is still not well described. Howev-
er, respiratory failure followed by cardiovascular com-
plications with underlying inflammation and thrombus 
formation are rapidly emerging key threats in COVID-19 
[1,2]. A “cytokine storm” or overproduction of pro-in-
flammatory cytokines such as interleukins (ILs) and tu-
mor necrosis factors (TNFs) is reported in the lungs of 
COVID-19 patients [3]. Currently, there are no approved 
drugs or vaccines with proven clinical efficacy to treat 
or prevent COVID-19. However, the US Food and Drug 
Administration (FDA) approved limited emergency use 
for hydroxychloroquine (HCQ) [4,5]. Other drugs such as 
arbidol, remdesivir, and favipiravir are currently under 
clinical trial to treat COVID-19, with mixed reports on 
their efficacy in the treatment of COVID-19 [5]. There 
is an urgent need for an effective drug to treat and pre-
vent COVID-19, with minimal side effects.

Limited knowledge about the mechanism of infec-
tion/action of SARS-CoV-2 appears to be the major 
problem in the identification of therapeutic targets and 
respective drugs to treat COVID-19. However, Gordon, 
et al. followed a comprehensive approach and cloned, 
tagged and expressed 26 of the 29 SARS-CoV-2 proteins 
and identified 332 high-confidence SARS-CoV-2-human 
protein-protein interactions [6]. The majority of SARS-

Introduction
The pandemic of coronavirus disease 2019 (COVID-19) 

caused by the novel coronavirus severe acute respira-
tory syndrome coronavirus-2 (SARS-CoV-2) has posed a 
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60-70% confluence, the cells were starved over-night in 
1% FBS and then treated with 5, 10 and 20 mM of VPA 
(Santa Cruz Biotechnology) for 24 hours as described 
[19-21]. The control groups were treated with the dilu-
ent. RNAs were extracted using Trizol (Invitrogen), and 
cDNA was synthesized (QuantiTect, Qiagen) according 
to manufacturer’s instruction. Quantitative (q) PCR was 
performed to measure the expression level of genes us-
ing SYBR® Select Master Mix (Applied Biosystems) and 
primers for ACE-2 [20], IL-6 (Forward-5’-CATTGGAG-
CAAGTGTTGGATCTT-3’ and Reverse-5’-GAGCTAATG-
CATGCCATTCTCA-3’), and inter-cellular adhesion mole-
cule-1 (ICAM-1) [20] in QuantStudio™ 3 Real-Time PCR 
System. GAPDH was used as the internal control [20]. 
Fold gene expression was calculated using the 2-∆∆Ct 
method, and the expression level in the vehicle-treated 
cells was considered as 100% to calculate % expression 
in VPA-treated cells. The differences between the two 
groups were calculated using Student’s T-test, and dif-
ferences between more than two groups were calculat-
ed using one-way ANOVA with Tukey’s test. A p-value of 
< 0.05 was considered significant.

Results
To test our hypothesis, we evaluated ACE-2 ex-

pression in cultured HUVECs that were treated with 
clinically relevant dose (5 mM) of VPA [19,21] for 24 
hours. HUVECs represent the standard cellular model 
to study endothelial cells in vitro [19,20,22]. Our qPCR 
data demonstrated a significant ~70% reduction (p = 
0.0079) in the expression level of ACE-2 in VPA-treat-
ed ECs in comparison to control ECs (Figure 1A). Given 
the venous nature of HUVECs, we next evaluated the 
expression level of ACE-2 in arterial ECs by treating cul-
tured HCAECs with 5 mM of VPA for 24 hours. Similar 
to HUVECs, we observed a significant ~70% reduction 
(p = 0.0159) in the ACE-2 expression in VPA-treated in 
comparison to vehicle-treated control HCAECs (Figure 
1B). To assess the dose-response effect of higher doses 
of VPA on endothelial ACE-2 expression, we treated HU-
VECs with 10 mM and 20 mM of VPA for 24 hours and 
evaluated ACE-2 expression. Our qPCR data showed a 
significant reduction (p < 0.0001) in ACE-2 expression 
for both 10 mM and 20 mM of VPA, but there was no 
significant difference (p = 0.7485) in ACE-2 expression 
between the two doses in VPA treated ECs (Figure 1C). 
Next, we evaluated the effect of VPA on the expression 
of pro-inflammatory IL-6 and the endothelial activation 
marker ICAM-1. We observed a significant downregu-
lation of IL-6 (p < 0.0001) following 5 mM of VPA treat-
ment to HUVECs in comparison to control (Figure 1D). 
Interestingly, VPA also significantly reduced ICAM-1 ex-
pression (p = 0.0022) in VPA-treated ECs in comparison 
to control ECs (Figure 1E).

Discussion
VPA is a well-known HDAC2 inhibitor, which has been 

safely used for over 50 years as an anticonvulsant drug 

CoV-2 interacting proteins were associated with replica-
tion, epigenetic regulation and vesicle trafficking path-
ways [6]. In their human lung mRNA expression profile, 
they identified enrichment of SARS-CoV-2-interacting 
protein and an epigenetic regulator, histone deacetyl-
ase 2 (HDAC2), which regulates epigenetics by remov-
ing acetyl groups from histones [6,7]. Many non-histone 
proteins such as transcription factors, chaperones and 
viral proteins are also subjected to acetylation [7]. Gor-
don, et al. also identified 66 therapeutic targets for 69 
compounds that include valproic acid (VPA) [6]. VPA is a 
FDA-approved HDAC2 inhibitor drug used to treat cen-
tral nervous system diseases such as bipolar disorder, 
epilepsy, and cancer [8-10]. VPA inhibits HDAC2 by in-
ducing its proteasomal degradation [9].

There are unequivocal evidence that angioten-
sin-converting enzyme 2 (ACE-2) receptors are the ‘en-
try door’ for SARS-CoV-2 to infect cells [11,12]. ACE-2 
receptors are mainly expressed on endothelial and ep-
ithelial cells [2,11]. Endothelial cells (ECs) contribute to 
more than 30% of all cells in the lungs [13], constitute 
the innermost layer of every blood vessel and respond 
to constantly varying hemodynamics to maintain ho-
meostasis [14]. ECs are plastic in nature; they have the 
capability to lose endothelial characteristics and transi-
tion into ‘stem cell-like” mesenchymal cells, a process 
known as endothelial-to-mesenchymal transition (End-
MT) [15,16].

HCQ, which is being tested in various clinical trials 
against COVID-19, is an autophagy inhibitor [17]. Au-
tophagy is a key homeostatic process, where cytosolic 
components are degraded and recycled through lyso-
somes for reuse [17]. We have previously demonstrat-
ed that inhibition of endothelial autophagy via genet-
ic deletion of autophagy-related gene 7 (ATG7) or by 
pharmacologic inhibition with bafilomycin induces 
EndMT-like phenotypic switching in ECs [18]. Interest-
ingly, a similar effect of VPA was also observed, where 
VPA induced EndMT-like phenotypic switching in ECs 
[19]. Given that ACE-2 is expressed basally and widely 
on the endothelial cells [2,11], we hypothesized that 
VPA-induced EndMT-like phenotypic switching causes 
reduced expression of ACE-2 and thereby would inhibit 
the SARS-CoV-2 rate of infection. We, for the first time, 
show that VPA downregulates ACE-2 expression and in-
hibits the expression of inflammatory cytokines in ECs. 
We also provide a detailed review on the mechanism 
of action of VPA and propose the plausible mechanism 
of the drug to protect and treat COVID-19 patients, en-
couraging personalized therapy.

Methods
Human umbilical vein ECs (HUVECs, pooled, Lonza) 

or human coronary artery EC (HCAECs, Lonza) were 
cultured in EC growth medium-2 (EGM™-2 Bulletkit™; 
Lonza) containing growth factors or MCDB 131 (Gibco) 
supplemented with serum and antibiotics. Following 
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Figure 1: VPA-treatment downregulates ACE-2 and inflammatory molecule expression in ECs. HUVECs or HCAECs were 
treated with either diluent, or 5, 10 or 20 mM of VPA and total RNAs were extracted 24-hours post-treatment. (A, C) qPCR 
data demonstrating reduced ACE-2 expression in VPA-treated, HUVECs and (B) HCAECs; (D) VPA-treatment (5 mM) also 
reduced the expression of IL-6; and (E) ICAM-1 in HUVECs. N = 3-4 in triplicates.
*p < 0.05, ** p < 0.01, ** p < 0.001 vs. corresponding diluent control group.
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ed endothelial genes which are relevant to COVID-19 
prevention and/or treatment include BNP (Natriuretic 
peptide B; 145-fold), MMP-9 (Matrix metallopeptidase 
9, 121-fold), PF-4 (Platelet factor 4, 25-fold), T-PA (Plas-
minogen activator, tissue, 18-fold), COX-2 (Prostaglan-
din-endoperoxide synthase 2, 3-fold) and TGFβ1 (Trans-
forming growth factor, beta 1, 1.3-fold). BNP was the 
most upregulated gene in VPA-treated ECs, which is a 
diagnostic biomarker for cardiac dysfunction [31], but is 
also anti-inflammatory and inhibit interleukins [32,33]. 
The next upregulated gene MMP-9 is anti-inflammatory 
[34,35] and is associated with lung remodeling [36]. PF-4 
is anti-viral as it inhibits human immunodeficiency virus 
type 1 (HIV-1) infection [37], and also protects the lungs 
against bacterial infection [38]. VPA-induced endothe-
lial and anti-thrombotic T-PA is of particular relevance 
to the COVID-19 patients. T-PA treatment is suggest-
ed for COVID-19 associated acute respiratory distress 
syndrome (ARDS) [39]. Furthermore, VPA is known to 
have protective effects in severe hemorrhage and isch-
emia-reperfusion injury [40]. Coagulopathy has become 
a hallmark of severe COVID-19 with high rates of central 
line thrombosis and vascular occlusive events (e.g., isch-
emic limbs, strokes, etc.) [39]. Ventilator-induced lung 
injury is another cause in COVID-19 death, and T-PA is 
known to attenuate ventilator-induced lung injury [41]. 
Overall, VPA-induced T-PA appears to be beneficial to 
COVID-19 patients due to its anti-thrombotic activity 
and attenuation of ventilator-induced lung injury func-
tion. COX-2 was also upregulated in VPA-treated ECs. 
Given the important role played by COX-2 in antipyretic 
nonsteroidal anti-inflammatory drugs (NSAIDs), caution 
should be taken while prescribing NSAIDs with VPA to 
COVID-19 patients [42]. The most downregulated and 
relevant to COVID-19 prevention and/or treatment 
genes include TFPI (Tissue factor pathway inhibitor, 
6-fold) and SPHK (Sphingosine kinase 1, 5-fold). Tissue 
factor is an initiator of coagulation and inflammation in 
the lung [43]. Most downregulated anti-coagulant TFPI 
activities are reported in the lungs of idiopathic pulmo-
nary fibrosis patients [44]; they are also a marker for 
the prediction of deep venous thrombosis and tumor 
metastasis in patients with lung cancer [45]. Given the 
increased rate of thrombosis in COVID-19, the status 
of TFPI needs to be investigated with VPA-treatment. 
The VPA-induced downregulation of SPHK1 appears to 
help COVID-19 treatment as followed: SPHK1 is known 
to contribute to ventilator-associated lung injury [46]; 
elevated SPHK1 enhances influenza virus infection [47]; 
SPHK1 also serves as a pro-viral factor by regulating vi-
ral RNA synthesis and nuclear export of viral ribonuc-
leoprotein complex upon influenza virus infection [48]. 
VPA-induced downregulation of SPHK appears to be 
helpful in the treatment of COVID-19 patients.

The exact mechanism behind HCQ-mediated thera-
peutic benefit to COVID-19 patients is not completely 
elucidated, but what we know as a fact is that HCQ is 

[8-10]. VPA is taken-up by endothelium immediately 
within a minute of intravenous injection in humans [23]. 
Cardiovascular complications with wide-spread endo-
thelial dysfunction, thrombosis and endotheliitis are 
rapidly emerging as a key threat in COVID-19 in addition 
to respiratory disease [1,2]. The endothelium plays a 
central role in inflammation, thrombosis and cardiovas-
cular complications. SARS-CoV-2 use ACE-2 receptors for 
cell entry, which are mainly expressed on ECs [2,11,12]. 
Altogether, these informations indicate a bigger role for 
VPA and endothelium in COVID-19. Accordingly, to de-
vise therapeutic strategies to counteract SARS-CoV-2 in-
fection and the associated pathology, it is crucial to un-
derstand and to apply the present published knowledge 
towards repurposing already approved drugs to treat 
or prevent COVID-19. Accordingly, we plan to evaluate 
the potential role of the drug VPA on ACE-2 expression 
in ECs. We also discuss our findings in relation to other 
published articles [19], providing a plausible mechanism 
for the use of VPA for the prevention and treatment of 
COVID-19 (Figure 2).

Our data demonstrate that VPA treatment to ECs 
significantly reduced ACE-2 expression. This data is clin-
ically very relevant for COVID-19 as ACE-2 is a cell “en-
try door” for SARS-Co-2 and also because SARS-CoV-2 
infection is shown to be enhanced by over-expression 
[24] and diminished by inhibition of ACE-2 [25-27]. The 
effect of VPA on ACE-2 expression indicates that VPA 
can inhibit the SARS-CoV-2 rate of infection by reduc-
ing its receptor ACE-2 expression level and can be used 
as a prevention strategy against COVID-19. Next, our 
data on the reduced expression of IL-6 in VPA-treated 
ECs is also clinically relevant, as the cause of death is 
the inflammation and thrombosis due to the “cytokine 
storm” mainly of interleukins such as IL-6 in the lungs 
of COVID-19 patients [3]. Particularly, the level of IL-6 
predicts respiratory failure, and IL-6 inhibitors are pro-
posed to ameliorate severe lung damage in COVID-19 
patients [28]. ECs can secrete pro-inflammatory cyto-
kines, and these cytokines “activate” endothelial cells 
to produce tissue factor, which regulates thrombosis 
[29,30]. ICAM-1 is markers for endothelial “activation” 
[30]. Interestingly, VPA also significantly reduced ICAM-
1 expression, indicating reduced endothelial activation 
(Figure 1E). The presented data is of immense impor-
tance as it provides a “treatment” strategy for COVID-19 
as VPA-induced downregulation of IL-6 and ICAM-1 are 
the regulatory molecules implicated in SARS-CoV-2-in-
duced inflammation and coagulation.

PCR array analysis for human endothelial-related 
genes in VPA-treated ECs is reported with a total of 
14 significantly up- and 14 down-regulated genes [19]. 
To evaluate the therapeutic role of VPA in COVID-19, 
we investigated these VPA-induced differentially ex-
pressed endothelial genes in relation to inflammation, 
coagulation, endothelial function, endotheliitis, cardio-
vascular and respiratory diseases. The most upregulat-
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be considered before prescribing VPA to COVID-19 pa-
tients with pre-existing pathologies. Furthermore, VPA 
is an anti-seizure drug, and there are reports suggesting 
that patients with pre-existing seizure disorder may be 
at greater risk for getting breakthrough seizures [53]. In 
these COVID-19 patients, VPA can be a preferred treat-
ment option.

This new knowledge about the mechanism of ac-
tion of VPA provides a novel potential therapeutic drug 
target for the prevention and treatment of COVID-19, 
and warrants immediate further investigation in animal 
models and in humans. We also suggest that VPA based 
therapeutics may exacerbate EndMT-related pathol-
ogies in COVID-19 patients with pre-existing diseases 
such as lung cancer or lung fibrosis, and promote per-
sonalized therapy in such COVID-19 patients. Overall, 
our manuscript provides a better source of necessary 
knowledge on VPA for researchers and health care prac-
titioners to find treatment for COVID-19. VPA is a FDA 
approved drug and any proof of these drugs showing 
protective effect against COVID-19 will reduce the re-

an autophagy inhibitor [17]. TGFβ-signalling induces 
EndMT [16], and loss of endothelial autophagy [18] or 
VPA-treatment to ECs [19], both exhibit TGFβ-induced 
EndMT. It is quite possible that EndMT-associated loss 
of endothelial function and gain of pro-fibrogenic mes-
enchymal function is the mechanism behind HCQ-asso-
ciated benefit in COVID-19 patients. In that scenario, 
similar benefits can be expected from VPA in COVID-19 
patients. EndMT is known to play roles in the devel-
opment process [49], and also in diseases such as pul-
monary vein stenosis, anomalous vascular remodeling, 
cerebral cavernous malformations, cancer progression 
and organ fibrosis [50,51]. Most importantly, it was re-
ported that 16% of lung fibroblasts in the pulmonary 
fibrosis mouse model originated from ECs through the 
EndMT process [52], and loss of endothelial autopha-
gy-induced EndMT exacerbated lung fibrosis in the same 
mouse model [18]. The role of EndMT in exacerbation of 
lung fibrosis might be the reason behind the no-effect or 
adverse effect of HCQ in critically-ill COVID-19 patients; 
however this needs to be evaluated. Similar side effect 
can be expected for VPA, and if true, precautions should 

  	

Figure 2: Schematic representing VPA-associated mechanisms in ECs to prevent and protect against COVID-19. VPA-treat-
ment reduces ACE-2 expression, which is a gate-entry receptor of SARS-CoV-2 on EC. VPA also reduces inflammatory IL-6 
expression along with endothelial activation marker ICAM-1, which will reduce thrombosis. VPA-induced T-PA expression 
will further protect against thrombosis, overall reducing SARS-CoV-2 rate of infection, SARS-CoV-2-induced inflammation 
and thrombosis to reduce pneumonia, lung failure and deaths in COVID-19 patients.
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quired drug approval time. In addition, VPA can be fast-
tracked for testing against COVID-19.
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