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Introduction
Exosomes are small extracellular vesicles that are 

released by many types of cells, including cancer cells. 
They contain a variety of molecules, including proteins, 
lipids, and nucleic acids, and have been shown to play 
important roles in intercellular communication and the 
spread of cancer [1,2].

In cancer, exosomes can be involved in various 
processes that contribute to tumor progression, 
including promoting angiogenesis (the formation of 
new blood vessels to support the tumor), facilitating 
metastasis (the spread of cancer to other parts of 
the body), and suppressing the immune system [2-4]. 
Exosomes, a subset of EVs, have captured the attention 
of researchers for their ability to transport cell-specific 
cargo, including tumor-specific proteins and factors 
that establish pre-metastatic niches [5,6]. Exosomes 
have also been investigated as potential biomarkers 
for cancer diagnosis and prognosis [7,8]. Studies have 
shown that the content of exosomes released by 
cancer cells can differ from that of exosomes released 
by healthy cells, and that analyzing the molecular 
signature of these exosomes could potentially be used 
to detect cancer at an early stage [9-12]. Exosomes 
are tiny vesicles that are secreted by cells and contain 
various biomolecules such as proteins, RNA, and 
DNA [13,14]. They play an important role in cell-to-
cell communication and have been studied for their 
potential use in diagnostic and therapeutic applications 
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Abstract
Exosomes are small membrane-bound vesicles that are 
released by various types of cells, including cancer cells, 
and play a role in intercellular communication. CD9 is a 
protein that is involved in cell signaling and adhesion. It is 
found on the surface of various cells, including cancer cells, 
and has been implicated in the communication between 
cancer cells and their microenvironment. Exosomes are 
small membrane-bound vesicles that are released by 
cells and contain various bioactive molecules, such as 
proteins, lipids, and nucleic acids. Exosomes have been 
shown to play a role in intercellular communication, and 
they have been implicated in the progression of cancer. 
There is evidence to suggest that CD9 is involved in the 
packaging and release of exosomes by cancer cells. 
CD9 has been shown to be important for the formation of 
tetraspanin-enriched microdomains (TEMs) on the surface 
of exosomes. These TEMs are thought to be important 
for the sorting and packaging of specific molecules into 
exosomes. In summary, CD9 appears to play an important 
role in the communication between cancer cells and their 
microenvironment via exosomes. The precise mechanisms 
by which CD9 mediates this communication are still being 
investigated, but the involvement of CD9 in exosome 
packaging and uptake suggests that it may be a promising 
target for the development of novel cancer therapies. 
Furthermore, CD9 has been shown to be involved in the 
uptake of exosomes by recipient cells. For example, studies 
have shown that CD9-positive exosomes released by 
cancer cells can be taken up by other cancer cells, leading 
to the transfer of oncogenic molecules and the promotion of 
cancer progression.
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proliferation of cancer cells and can also contribute to 
the formation of new blood vessels (angiogenesis) that 
feed the tumour [34,39].

Exosomes can facilitate the spread of cancer cells: 
Cancer cells can release exosomes that contain molecules 
that can help to prepare the tumour microenvironment 
to be more receptive to metastasis [39]. For example, 
exosomes can carry enzymes that help to degrade the 
extracellular matrix surrounding the primary tumour, 
which can make it easier for cancer cells to invade and 
spread to other parts of the body [39] (Figure 1).

Exosomes and Their Impact on Immune 
Suppression and Cancer Progression

Exosomes can suppress the immune system: Cancer 
cells can release exosomes that contain molecules that 
suppress the immune system, making it more difficult 
for the body to recognize and attack cancer cells [39,40]. 
These exosomes can contain proteins that inhibit the 
activity of immune cells such as T cells and can also 
carry microRNAs that regulate the expression of genes 
involved in immune function. Additionally, exosomes 
affect macrophages by promoting the production of 
M2 macrophages, which possess immunosuppressive 
and anti-inflammatory properties that facilitate tumour 
invasion and metastasis [40]. They also upregulate IL-10 
and CD206 expression in naive macrophages, resulting 
in M2 polarization. Specific miRNAs carried by exosomes 
can further suppress macrophage immune function and 
contribute to cancer progression [39,41].

Moreover, exosomes disrupt the maturation of 
immature myeloid cells (IMCs) into dendritic cells 
and monocytes, leading to an increase in myeloid-
derived suppressor cells (MDSCs) with potent 
immunosuppressive activity [23,41,42]. Exosomes can 
inhibit the activity of immune cells: Cancer cells can 
release exosomes that contain molecules that inhibit 
the activity of immune cells such as T cells, B cells, 
and natural killer (NK) cells [4,5]. These exosomes can 
contain proteins such as programmed death-ligand 1 
(PD-L1) that interact with receptors on immune cells 
and suppress their activity [4,5]. Exosomes can also 
carry microRNAs that regulate the expression of genes 
involved in immune function [3]. Exosomes can promote 
the activity of immunosuppressive cells: Cancer cells 
can release exosomes that contain molecules that 
promote the activity of immunosuppressive cells 
such as regulatory T cells (Tregs) and myeloid-derived 
suppressor cells (MDSCs) [5]. These cells can inhibit 
the activity of other immune cells and promote a 
tumour-supportive environment [5]. The interaction 
between cancer cells and exosomes is complex and 
can contribute to various aspects of tumour growth 
and progression [3,5]. Understanding the mechanisms 
underlying these interactions is important for 
developing new diagnostic and therapeutic strategies 

[14-16]. Another potential application of AI in the field 
of exosome research is in the development of exosome-
based therapeutics [2,17,18]. Artificial intelligence (AI) 
can be used to design and optimize exosomes for specific 
therapeutic purposes, such as targeted drug delivery 
[2,19-21]. AI has been increasingly applied to the study 
of exosomes, particularly in the areas of exosome 
isolation, characterization, and analysis [2,22,23]. For 
example, AI algorithms can be used to analyze large 
datasets of exosome content and identify patterns 
and relationships that might be difficult for humans to 
detect [2,23]. Additionally, machine learning techniques 
can be used to predict the content of exosomes based 
on their physical properties, such as size and surface 
markers [2].

In the field of cancer research, AI has been used to 
analyze exosomes for biomarker discovery and diagnosis 
[24-26]. By analyzing the contents of exosomes isolated 
from cancer patients, researchers hope to identify 
specific molecules that could serve as early indicators 
of the disease or as targets for therapy [27,28]. The 
combination of exosome biology and AI holds great 
promise for advancing our understanding of intercellular 
communication and developing new diagnostic and 
therapeutic approaches for a wide range of diseases 
[2,29,30]. One potential application of AI in the field 
of exosome research is in the analysis of exosome 
data. As the field of exosome research grows, there is 
an increasing amount of data being generated, and AI 
can be used to analyze this data to identify patterns 
and relationships that may be difficult to detect using 
traditional methods [2,31,32].

Furthermore, researchers are exploring the potential 
of using exosomes as a tool for cancer treatment 
[33,34]. One approach involves engineering exosomes 
to carry therapeutic molecules, such as drugs or RNA-
based therapies, to target cancer cells specifically 
[34,35]. Another approach involves using exosomes 
to deliver cancer vaccines or to stimulate the immune 
system to attack cancer cells [36]. However, much 
more research is needed to fully understand the role of 
exosomes in cancer and to develop effective exosome-
based therapies.

Cancer and Exosomes
Cancer cells interact with exosomes in various ways 

[37,38]. Cancer cells can release a higher number of 
exosomes than healthy cells, and the contents of these 
exosomes can promote tumour growth and progression 
[34,38]. Here are some ways in which cancer cells 
interact with exosomes, Exosomes secreted by cancer 
cells can promote tumour growth: Exosomes secreted 
by cancer cells can contain various molecules such as 
growth factors, cytokines, and oncogenes, which can 
be taken up by neighbouring cells or distant organs 
[34]. These molecules can promote the growth and 
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Role of Exosomes in Cancer, Challenges, and 
Future Directions

Exosomes derived from cancer cells contain various 
molecules, including proteins, lipids, and nucleic 
acids, such as microRNAs, which can be transferred to 
recipient cells and alter their biological functions [4,43]. 
This can promote tumor growth, angiogenesis, invasion, 
and immune evasion [1,4]. However, studying the role 
of exosomes in cancer poses several challenges [1,4,13]. 
One of the significant challenges is the isolation and 
characterization of exosomes from complex biological 
fluids, such as blood, which contains a high number 

for cancer [3]. Exosomes can interfere with antigen 
presentation: Exosomes released by cancer cells can 
interfere with antigen presentation, which is the process 
by which immune cells recognize and respond to foreign 
substances such as tumour antigens [3]. For example, 
exosomes can carry molecules that downregulate the 
expression of major histocompatibility complex (MHC) 
molecules on cancer cells, which are necessary for 
antigen presentation [3,43]. Understanding the role of 
exosomes in regulating the immune response to cancer 
is important for developing new immunotherapies that 
can boost the immune response and improve outcomes 
for cancer patients [3] (Figure 2).

Figure 1: Exosome Biogenesis and its components (Adapted from 2021, American Chemical Society).
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and sensitive methods for the isolation and analysis 
of exosomes, identifying the molecular mechanisms 
underlying their functions, and exploring their potential 
as therapeutic targets for cancer treatment.

Interdisciplinary collaboration in exosome 
research fosters the development of promising cancer 
theragnostic for the future. Recent advancements 
include the integration of exosome-based cancer 
biomarker research with machine learning and artificial 
intelligence, paving the way for precision oncology. In the 
context of cancer, exosomes have been shown to play 
a critical role in various aspects of tumour progression, 
including tumour growth, invasion, and metastasis 
[13,44]. They can also contribute to drug resistance and 
immune evasion, making them an attractive target for 
therapeutic intervention [25].

of non-exosomal particles [1,4]. Moreover, exosomes 
derived from different types of cancer cells may have 
different molecular compositions and functions [13]. 
Thus, developing specific strategies to target cancer-
derived exosomes may be a promising therapeutic 
approach [13]. Another challenge is the lack of 
standardized protocols for the isolation and analysis of 
exosomes, making it difficult to compare results across 
different studies. Furthermore, the heterogeneity of 
exosomes and the lack of specific markers for their 
isolation and characterization also make it challenging 
to study their functions accurately [13,25]. Despite 
these challenges, the study of exosomes in cancer 
has great potential for identifying novel biomarkers 
and developing new therapeutic approaches. Future 
research directions include developing more specific 

Figure 2: Role of CD9 in exosome communication with cancer and immune system.
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Concluding Remarks
Exosomes have emerged as a pivotal focus in the field 

of oncology, playing crucial roles in cancer metastasis. 
Exosomes are not directly used in artificial intelligence 
(AI) applications, but their analysis and interpretation 
can contribute to the development of AI tools for cancer 
diagnosis, prognosis, and treatment. Exosomes contain 
various biomolecules, including proteins, lipids, and 
nucleic acids, which can serve as potential biomarkers for 
cancer detection and monitoring. AI algorithms can be 
trained on large datasets of exosome-related molecular 
data to identify patterns and signatures that distinguish 
cancer from normal cells or predict disease progression 
and treatment response. For example, machine learning 
algorithms have been developed to analyze exosome-
derived microRNA profiles and predict the stage and 
subtype of various cancer types, such as breast, lung, and 
prostate cancer. Other AI tools have been designed to 
analyze the lipid composition of exosomes and identify 
lipid markers associated with cancer progression and 
metastasis. Moreover, the transfer of exosomal cargo 
between cancer cells and their microenvironment 
can influence tumor growth and response to therapy. 
Understanding the mechanisms underlying exosome-
mediated communication in cancer can help develop 
new therapeutic approaches, such as targeting specific 
exosomal proteins or miRNAs. AI algorithms can facilitate 
the identification of potential exosome-based targets and 
assist in the design of more effective therapies.

Challenges, such as standard isolation methods and 
toxicity, warrant further scientific investigation and 
clinical trials. Exosomes not only open up a vast realm 
of precision medicine but also serve as vital biomarkers 
for tracking cancer and testing new drugs to combat 
the disease. Owing to their remarkable stability and 
biocompatibility, exosomes hold promise as effective 
drug delivery systems for cancer treatment. The analysis 
of exosomes in cancer research can provide valuable 
data for AI applications in cancer diagnosis, prognosis, 
and treatment.
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