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Summary
Adult stem cells hold tremendous potential for regenerative 
medicine. Harnessing their therapeutic benefits requires that we 
gain fundamental understanding of the mechanisms by which stem 
cells function and divide in vivo. This is hampered by the fact that 
stem cells often reside in compartments that remain difficult to 
access using imaging approaches. The nematode C. elegans is 
transparent and studying its germ line stem cells (GSCs) offers a 
powerful means to characterize how stem cells divide in vivo. In this 
review, we present an overview of the core molecular events that 
govern GSC division in C. elegans and describe what lessons can 
be learned from these cells to further understand adult stem cell 
division in other systems.
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Depending on various factors, including tissue demand, adult SCs 
can proliferate, differentiate, or remain quiescent. Since adult SCs 
collectively possess the ability to regenerate most adult tissues, they 
offer major therapeutic potential.

The introduction of in vitro SC culture revolutionized SC 
research by facilitating the expansion, manipulation (genetic and 
pharmacological) and microscopic observation of SCs [5]. Yet, 
SCs in vivo respond to various signals provided by a specialized 
somatic cellular environment termed the niche, which is not fully 
recapitulated by in vitro culture conditions. SCs are also sensitive to 
growth factors whose concentrations can vary during development 
or can be affected by environmental conditions. Our current 
understanding of the role of the SC niche, which signals to SCs to 
maintain their undifferentiated state, stems from pioneering studies 
in invertebrate models, such as Drosophila [6,7] and C. elegans [8]. 
SC niches were later identified in vertebrates and are conceptually 
very similar to invertebrate niches, including how they signal to the 
SCs [9-11]. Furthermore, the study of SC sensitivity to environmental 
and physiological factors was initiated by a key contribution from 
Drummond-Barbosa and Spradling, who demonstrated that the 
proliferation of Drosophila germline SCs (GSCs) responds to 
nutritional input [12]. Their work revealed that diet controls GSC 
proliferation by influencing the secretion of insulin-like peptides 
by neuro-secretory cells in the Drosophila brain and thus changing 
insulin/IGF-1 signaling levels [12,13].

The study of SCs in vivo has been hindered by their limited 
accessibility in most vertebrate systems, which require surgical 
dissections and/or complex transplantation assays [3]. Recent 
advancements in intravital imaging of certain murine adult SC 
populations have yielded invaluable insights into how SCs interact 
with their niche and alter their behaviour in response to injury [14]. 
This work highlights the importance of studying SCs within their 
native environment and the need for additional model systems that 
effectively combine genetic, cell biological and molecular approaches 
to the study of SCs in vivo.

The nematode C. elegans has been used for the last 50 years to 

Introduction
Pioneering work by Till and McCulloch, in the early 1960s 

demonstrated the existence of multipotent stem cells in the mouse 
bone marrow that could self-renew and differentiate into other 
cell types [1,2]. This capacity to both self-renew and differentiate 
is a hallmark that characterizes all known stem cells (SCs). Classic 
blastomere transplantation experiments performed in the early 
mouse embryo in the 1970s defined two additional kinds of stem 
cells: totipotent SCs and pluripotent embryonic SCs [3]. Totipotent 
SCs produce all the differentiated cells in an organism, including 
extra embryonic tissues, while embryonic SCs (only present in 
mammals) can differentiate into all three germ layers and produce 
the embryo proper [4]. Multipotent SCs, also known as tissue-
resident or adult SCs, on the other hand, have a more restricted 
differentiation potential, and can only give rise to one or more related 
cell types. Whereas totipotent SCs and embryonic SCs only exist in 
the early embryo, adult SCs persist over the entire life of an organism, 
thereby ensuring the normal turnover and/or repair of adult tissues. 
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uncover and characterize gene function within an in vivo context. C. 
elegans animals are transparent, which permits visualization of all cellular 
processes in situ, without the need for surgical manipulation (Figure 1A). 
The gonad of adult C. elegans hermaphrodites forms two symmetrical 
U-shaped arms in which ~ 1000 syncytial germ cells are organized in 
a columnar monolayer around a common central cytoplasmic core, 
known as the rachis [15]. Each gonad arm is polarized, from distal to 
proximal, with germ cells progressing through all stages of meiosis, 
culminating with fully differentiated gametes at the proximal end, near 
the spermatheca, where oocytes are fertilized and extruded into the 

uterus (Figure 1B). The distal-most region of each gonad arm contains a 
population of GSCs that undergo self-renewing mitotic divisions (figure 
1C), but can also differentiate to give rise to terminally differentiated 
gametes (sperm and oocytes). In this sense, C. elegans GSCs essentially 
recapitulate the features of adult SCs found in mammals.

Development and Regulation of the C. elegans GSC 
Pool by the Niche

The complete lineage analysis of C. elegans was done more than 
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Figure 1: The C. elegans germline.
(a) Schematic depiction of an adult hermaphrodite worm. The germline is readily accessible for live cell microscopy in whole mount animals; (b) Enlarged 
schematic depiction of a single gonad arm. Germ cells are arranged in a conveyor belt-like fashion with mitotic germ cells at the distal end of the gonad arm 
(the mitotic zone, MZ). As cells move along the distal arm they enter meiosis in the transition zone (TZ) and progress through pachytene. In the loop region, 
the majority of germ cells undergo apoptosis and the remaining cells begin to enlarge and mature into oocytes, which occupy the proximal arm; (c) Enlarged 
schematic depiction of the mitotic zone. GSCs divide mitotically to maintain the size of the GSC pool while also sustaining oocyte production. GSCs enter 
meiosis as they leave the niche, forming crescent-shaped nuclei. The niche (the distal tip cell) surrounds the distal end of the gonad arm and extends processes 
proximally along the mitotic zone. For simplicity, plasma membranes were omitted in panel.
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30 years ago, allowing a detailed understanding of cell differentiation 
and interactions during development. All germ cells originate 
from a single germline blastomere, termed P4, that is born during 
embryogenesis out of a succession of asymmetric cell divisions 
[16,17]. Around the 100-cell stage, the P4 blastomere divides 
symmetrically into two primordial germ cells that remain mitotically 
quiescent during the remainder of embryogenesis. The primordial 
germ cells resume mitotic proliferation during the first larval stage 
and the germline undergoes proliferative expansion throughout the 
following three larval stages [15]. Proximal germ cells enter meiotic 
differentiation during the third larval stage to generate gametes during 
the fourth larval stage and adulthood, first forming ~ 300 sperm then 
switching to oocyte fate. Adult hermaphrodites maintain two pools of 
~ 200 GSCs that undergo homeostatic self-renewal, one at each distal 
extremity of the two gonad arms (Figure 1).

Laser ablation experiments performed in the early 1980s revealed 
that a single somatic cell, known as the Distal Tip Cell (DTC), acts 
as niche for C. elegans GSCs [8]. In hermaphrodites, two DTCs are 
born during the first larval stage and, in addition to promoting GSC 
fate, migrate throughout larval development to elongate and structure 
each gonad arm. When migration stops, the two crescent-shaped 
DTCs start elongating membrane processes toward the proximal end 
of the gonad [18,19] although the precise role of DTC elongation 
remains unclear.

Thorough molecular and genetic analyses revealed that the DTC 
relies on a Notch ligand, termed LAG-2, to activate the Notch receptor 
at the surface of GSCs [20,21]. Activation of Notch signaling in GSCs 
results in the induction of mitotic fate regulators and the repression 
of meiotic fate regulators, thus promoting GSC self-renewal over 
differentiation [22]. This is an active process as ablating the DTC or 
mutating the Notch receptor both result in loss of GSC fate and entry 
into meiosis, while displacing the DTC or over activating the Notch 
receptor causes GSC over proliferation, a phenotype reminiscent of 
benign tumors in mammals [8,20,23,24]. In wild-type animals, germ 
cell meiotic entry therefore naturally occurs when GSCs move away 
from the DTC and hence exit the niche, presumably as a consequence 
of sustained GSC proliferation.

Recent evidence suggests that all pre-meiotic germ cells are 
equivalent and only vary in their degree of intracellular Notch activity, 
depending on the amount of signal they receive from the niche, which 
is inversely proportional to their distance from the DTC body [25]. 
Importantly, G2 GSCs that stop receiving niche signaling undergo one 
single mitotic division before entering meiosis and as such there is 
no transit amplification prior to differentiation in this system [26]. 
Undifferentiated germ cells, which may encompass both stem and 
progenitor cells, are thus collectively referred to as GSCs.

Signaling Pathways that Regulate GSC Proliferation 
and Quiescence

Similarly to mammalian adult SCs, C. elegans GSCs exhibit 
quiescence, during which they temporarily arrest cell cycle progression 
while remaining in an undifferentiated state. The decision to proliferate 
or enter quiescence is made through integration of multiple signals. 
Following embryogenesis, after the animals have begun to feed, a 
neuronal signal activates insulin/IGF-1 signaling (IIS) to initiate larval 
growth and the two formerly quiescent primordial germ cells begin 
mitotic proliferation [27]. The GSC pool undergoes proliferative 
expansion during larval development, peaking at about 200 GSCs per 
gonad arm in early adulthood, and then slowly decreasing in number 
as animals age [28-31]. Expansion of the GSC pool and maintenance 
of its size is dependent on nutrient uptake which, through IIS levels, 
stimulates GSC proliferation in larvae and adults [29,32,33]. Down 
regulation of DAF-2, the sole C. elegans insulin/IGF-1 receptor 
ortholog [34], triggers the activation and nuclear translocation of the 
forkhead transcription factor DAF-16/FOXO [35,36] which inhibits 
GSC proliferation by activating the transcription of several stress 
response genes in the germ line [23,33,37]. Poor nutrition and/or 
reduced IIS therefore leads to adult animals having a lower number 

of GSCs per gonad arm [31,38]. In addition to being influenced by IIS 
levels, the size of the GSC pool appears to be controlled by sensory 
inputs through TGF-β signaling levels in the niche [39].

The interpretation of changes in GSC pool size can be 
confounding, as the adult GSC pool size depends on a combination 
of proliferation during larval growth, extent of niche signaling and 
the propensity of GSCs to differentiate. However, information on past 
GSC proliferation can be inferred through measurements of the GSC 
pool size during the early stages of development, before the proximal-
most GSCs have begun to differentiate [28,32,40]. Such measurements 
revealed that a decrease in IIS results in reduced GSC proliferation 
during larval development [32-33], thus potentially contributing to 
the smaller GSC pool size found in daf-2 mutant adults.

The lack of nutrition and/or the resulting down regulation in IIS 
is not the only factor that can promote GSC quiescence. When they 
encounter harsh environmental conditions and/or over-crowding 
early in their development, C. elegans larvae can enter a diapause-
like stage called dauer during which GSCs enter G2 quiescence [32]. 
While starvation promotes dauer formation via IIS down regulation, 
overcrowding inhibits TGF-β signaling and the inactivation of either 
pathway is sufficient to induce dauer formation and GSC quiescence 
[32,41]. When dauer formation is induced through a down regulation 
of TGF-β signaling, DAF-16/FOXO is dispensable for the installment 
of GSC quiescence [32]. Similarly, larvae hatched in the absence of 
food do not require DAF-16/FOXO to maintain GSC quiescence [40]. 
The key gene products that couple nutritional inputs and sensory 
information to GSC activity independently of DAF-16/FOXO in larvae 
include C. elegans orthologs of the dual specificity phosphatase PTEN, 
and the protein kinases LKB1 (along with its co-factor STRADα) 
and AMPK [32,40,42,43]. While the molecular link between PTEN 
and LKB1 remains obscure, it is clear that LKB1 activates AMPK 
through direct phosphorylation on a conserved residue in AMPK’s 
activation loop [42,44]. AMPK is also allosterically stimulated by 
AMP, the concentration of which rises under energetic stress [45]. 
These proteins are very well conserved throughout eukaryotes and 
their homologs have since been reported to similarly influence SC 
proliferation in mammals. Indeed, PTEN [46,47] and more recently, 
LKB1 [48-50] were both found to be necessary for the maintenance 
of murine hematopoietic SC quiescence. While very recent work also 
confirms a contribution of AMPK in the regulation of hematopoietic 
SC activity [48,51], its precise role remains unclear. Fragmented 
evidence, in both C. elegans and mammalian systems, suggests that 
PTEN, LKB1 and AMPK inhibit SC growth and proliferation largely 
through inactivating the mTOR complex in SCs, thus decreasing 
protein synthesis [48,52-55].

Proliferation rates directly report on GSC stimulation at any 
given time and can be evaluated in vivo by various means, including 
mitotic index (MI) or S-phase index measurements [30,56]. Using 
such methods, it was found that GSC proliferation in adult C. 
elegans is further influenced by nutrition-independent factors. 
In hermaphrodites that are sperm depleted, oocytes arrest their 
maturation and accumulate in the proximal gonad [57]. Oocyte 
accumulation promotes G2 GSC quiescence, which is perturbed by rare, 
stochastic and transient bouts of proliferation, leading to an overall 
drastically reduced proliferation rate [29,58]. As is the case under 
certain circumstances during larval development, the promotion of 
GSC quiescence in adult hermaphrodites that are devoid of sperm is 
dependent on PTEN, but independent of DAF-16/FOXO [29]. Most 
interestingly, the regulation of GSC proliferation through this process 
occurs independently in the two gonad arms, thus effectively coupling 
each GSC population to the needs of its own gonad arm for oocyte 
production [29]. This is accomplished despite a systemically activated 
IIS pathway that would otherwise promote GSC proliferation equally 
in both gonad arms. These results indicate that PTEN acts to locally 
antagonize systemic IIS and block GSC proliferation in order to 
couple GSC proliferation to oocyte needs [29].

Such localized adult SC regulation is unlikely to be restricted to C. 
elegans GSCs. For example, mammalian muscle SCs, that are normally 
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quiescent throughout adult life, resume proliferation to sustain muscle 
repair following injury [59,60] and they achieve this without any 
nutritional change. Furthermore, as no systemic muscle overgrowth 
has been reported following localized injury, it is likely that only the 
muscle SCs located close to the injury resume proliferation. The C. 
elegans GSCs therefore constitute an excellent model for the study of 
adult SC activity regulation, and we anticipate that much more will be 
learned in this system regarding the regulation of adult SC activities, 
including by systemic information, by aging, and by tissue demand.

Regulation of GSC Mitosis
All SCs, irrespective of tissue type, share one common attribute-

they must, at some point, divide mitotically. Mitosis drives 
developmental expansion of the stem cell pool, sustains homeostatic 
self-renewal and permits tissue regeneration upon injury. Several 
features of SCs may impose specific requirements on how they 
undergo mitosis. The dependence of SC identity on proximity 
to the niche means that the orientation of cell division, which will 
impact daughter cell placement relative to the niche once division is 
complete, may be important for maintaining a balance between SCs 
and their differentiating progeny. Spindle orientation in SCs may be 
regulated such that each SC division is asymmetric, i.e., one daughter 
cell remains adjacent to the niche, while the other is displaced, as 
is the case for GSCs in the Drosophila testis [61]. Regulated spindle 
orientation can also be subject to orientation switching. Drosophila 
female GSCs can divide both asymmetrically and symmetrically 
relative to the niche, with the former producing differentiating 
cystoblasts and the latter replacing a neighbouring stem cell [62]. 
Alternatively, in tissues where SCs are maintained at the population 
level, cell division is symmetric with respect to cell fate (i.e., both 
daughter cells have the potential to be SCs or to differentiate) and 
spindle orientation relative to the niche may be randomly distributed. 
A fixed SC pool size is then maintained by stochastic loss of SCs from 
the niche, a mode of SC maintenance termed population asymmetry 
that appears common in rapidly cycling tissues such as the intestine 
and epidermis [63].

C. elegans GSCs are likely to follow a model of population 
asymmetry [11]. During germline development, GSC divisions 
are thought to be symmetric, as the orientation of division appears 
variable, ablation of one or more GSCs is compensated for by 
surviving cells and ectopic positioning of the niche is sufficient to 
induce GSC fate [8,64]. In adult GSCs, spindle orientation relative to 
the niche also appears widely variable with divisions both parallel and 
perpendicular to the proximal-distal (niche) axis [30]. However, we 
note that adult niche morphology is remarkably complex, with long, 
branching processes extending many cell diameters away from the 
DTC body [18,19]. The recent development of live imaging strategies 
for the direct observation of GSC divisions [65] will facilitate future 
inquiries into the function of these niche extensions and whether they 
impact spindle orientation in GSCs.

SCs contribute to tissue homeostasis over remarkable time 
scales, from days to years. Thus maintaining genome fidelity upon 
SC division is critical to their function. A key regulator of mitosis 
that is responsible for preserving mitotic fidelity is the spindle 
assembly checkpoint (SAC). During mitosis, replicated chromosome 
pairs connect to opposite spindle poles and become aligned on the 
metaphase plate. This bi-orientation guarantees that upon anaphase 
chromatid separation, each daughter cell receives the correct 
chromosome number [66]. Attachment of sister chromatids to 
the mitotic spindle is an inherently stochastic process of variable 
duration; thus, to prevent chromosome segregation errors and 
maintain genome stability, anaphase onset is blocked by the SAC 
until bi-orientation is achieved [67]. Weakened SAC function leads 
to aneuploidy and has been associated with tumor development in 
both model systems and humans [68]. Addressing SAC activity in 
SCs has been difficult, as thorough assessment of mitotic progression 
and accurate timing of events such as anaphase onset require live 
imaging approaches, which are challenging for most SC populations. 
As C. elegans GSCs are amenable to live imaging studies, they have 

provided an opportunity to investigate how the SAC functions in SCs. 
Notably, compared to embryonic blastomeres, which have a relatively 
weak SAC [69-71], GSCs show enhanced SAC activity with longer 
SAC-dependent mitotic delays following spindle perturbations [65]. 
Determining at a molecular level how these changes are achieved over 
the course of germline development and how they may be linked to 
SC fate is an interesting area for future inquiry.

Lastly, another feature of SC mitosis derives from the location 
of these cells in mature tissues within the broader physiological 
environment of an adult organism. To sustain tissue function over 
the lifetime of an organism, SCs must execute mitosis under a 
range of physiological conditions. While various signals can induce 
a G1 or G2 cell cycle arrest, including unfavourable environmental 
conditions, within the complexity of a living organism, SCs are 
likely to encounter a range of suboptimal conditions, which are 
not necessarily inhibitory for cell cycle progression. Moreover, in 
tissues with a high rate of cellular turnover, such as the intestine 
or epidermis, complete cell cycle arrest may interfere with tissue 
function, as is evidenced by the negative side effects of many anti-
proliferative cancer drugs. Thus SC mitosis is likely to be subject to a 
range of physiological and environmental inputs. Live imaging of C. 
elegans GSCs has revealed that key mitotic parameters, including the 
timing of anaphase onset, are affected by physiological manipulations, 
such as dietary restriction, and developmental changes, such as the 
transition from developmental expansion to adult maintenance of 
the SC pool [65]. Dietary restriction, in particular, appears to impair 
chromosome congression and/or spindle assembly, as eliminating the 
SAC in calorie-restricted animals caused an increase in chromosome 
segregation errors relative to well-fed controls [65]. The mechanism 
by which dietary restriction impacts these core mitotic processes 
remains unknown and, importantly, whether SAC activity is up 
regulated to compensate for impaired spindle assembly when diet is 
restricted has not been established.

Conclusion and Outlook
C. elegans GSCs thus constitute an outstanding and uniquely 

accessible model system to study in vivo SC regulation at all levels, 
including how they are regulated by the niche, how their activity is 
influenced by growth factors, and how mitotic accuracy is ensured. 
The importance of understanding how adult SC division is regulated 
in vivo is bolstered by its relevance for regenerative therapies. For 
example, it may be beneficial to stimulate a given population of 
skin and/or muscle SCs to enhance healing in an elderly patient, or 
of neural SCs to overcome a neurodegenerative disorder. However, 
understanding which molecules are specifically involved in locally 
coupling the activity of the targeted adult SC population to its 
differentiated progeny needs will require further investigation in 
order to envisage such a strategy. In light of recent results in C. elegans 
and Drosophila, it would indeed appear unwise to try to accomplish 
adult SC reactivation by systemically stimulating SC activity, for 
example through activating IIS. The effects of this would be systemic 
and hence have undesired side-effects in untargeted tissues, but 
more importantly, they could be abolished by local feedback signals 
originating from the differentiated SC progeny [29]. Further genetic 
and molecular characterization of this mechanism using C. elegans 
GSCs may help to guide experimental exploration of this process in 
mammalian systems.

A better understanding of in vivo SC regulation may also be 
desirable for cancer prevention and treatment, as evidence suggests 
that cancer may arise from defects in stem cell division. Indeed, a 
recent study has uncovered a strong positive correlation between the 
number of times SCs divide over a person’s life in a given organ and 
the lifetime cancer risk for that organ [72]. While age has long been 
considered as the greatest risk factor for developing cancer [73], this 
correlation suggests that the greatest cancer risk factor may actually 
be the total number of divisions stem cells execute over our lifetime. 
This view is strengthened by the current mechanistic understanding 
of tumorigenesis, which is believed to arise following accumulation 
of tens to hundreds of inherited genetic and epigenetic changes that 
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Understanding what normally restrains adult SC proliferation in vivo, 
and how the mechanisms that ensure the accuracy of SC divisions are 
implemented, could therefore help us to better define the initial steps 
that underlie tumorigenesis.

Finally, we note that the C. elegans GSCs follow a model of 
population asymmetry, which is also associated with tissues that 
undergo rapid homeostatic turnover in human adults, including the 
intestinal epithelium. Interestingly, germline mutations in the human 
orthologs of some of the genes required for GSC quiescence in C. 
elegans (PTEN and LKB1) lead to the related dominantly-inherited 
tumour-predisposing Cowden’s and Peutz-Jegher’s syndromes, 
respectively [77-79]. Incidentally, the main clinical features of 
these syndromes is the appearance of multiple benign polyps in the 
gastrointestinal tract [80]. Based on the similarity of this clinical 
feature to the C. elegans phenotype shown by mutants in these genes, 
and of their underlying cellular and molecular cause, we propose that 
the C. elegans GSCs may represent a particularly well-suited system to 
better understand these syndromes.
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