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As for the classification of cytokines [1,2], there are 
pro-inflammatory cytokines such as tumor necrosis 
factor (TNF)-α, interleukin (IL)-1β and IL-6, which induce 
acute inflammation. Immunomodulatory cytokines such 
as IL-2, interferon (IFN)-γ and IL-12p70 are produced 
to induce cellular immunity as protection against 
pathogens such as viruses and intracellular bacteria. 
Figure 1 shows the cytokine balance based on helper 
T (Th) cells, and the effects of exhaustive exercise on 
the component cytokines are described later (Figure 
1) [5]. There are also anti-inflammatory cytokines 
such as IL-1 receptor antagonist (IL-1ra), IL-4, IL-6, IL-
10 and IL-12p40, which block action and production 
of other pro-inflammatory and immunomodulatory 
cytokines. Here, IL-6 is classified as a multi-functional 
cytokine, because it can act as both a pro- and an anti-
inflammatory cytokine, depending on the progression 
of inflammation. Colony-stimulating factors are 
involved in hematopoiesis, mobilization and activation 
of neutrophils and monocytes. Chemokines are 
chemotactic cytokines that regulate tissue infiltration 
of leukocytes.

This article firstly introduces findings on the effects 
of most exhaustive exercise conditions, a maximal in-
tensity exercise within 30 min, and a long duration race 
such as marathon, duathlon and triathlon on cytokine 
release in observational studies. Then, some of the 
main experimental research concerning the impacts on 
the body and the underlying mechanisms of endurance 
exercise-related phenomena are highlighted. Besides, 
our findings of cytokine dynamics following eccentric 
exercise in relation with muscle damage were paradox-
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The objective of this review is to introduce significant 
research findings mainly on cytokine responses to exercise. 
First, some basic background information on cytokines is 
provided. Then, some of our data according to exercise 
modes and key experimental research on the factors 
affecting cytokine responses to exercise are explained. 
Furthermore, the mechanisms and modulations of the 
cytokine responses are described to understand stress and 
inflammatory reactions and their prevention/recovery.
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Introduction
Cytokines are important intercellular signaling mole-

cules that regulate inflammation and immune respons-
es [1]. They are produced by a variety of cells and are 
classified into several different categories based on 
their bioactivity. Physiologically, cytokines act locally 
in an autocrine or paracrine manner at very low con-
centrations. These actions are in contrast to hormones, 
which exert their influence through the systemic circu-
lation on target organs. However, pathologically, cyto-
kines are released systemically in response to a variety 
of serious insults such as systemic infections, severe 
trauma, burn injury, and acute myocardial infarction. 
Therefore, the increase in the circulating concentration 
of cytokines (hypercytokinemia) is considered abnor-
mal and is collectively designated as a Systemic Inflam-
matory Response Syndrome (SIRS) clinically [2-4].
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elevated immediately after exercise, and the urine 
level was also elevated 1 h later, indicating a temporal 
secretion into the circulation and subsequent excretion 
into urine. 

These data suggested that some cytokines were 
rapidly excreted from the circulation and that cytokine 
in plasma might only reflect a minor portion of the entire 
amount produced in the body. Also, it was suggested 
that exercise stress promoted the release of cytokine 
antagonist and anti-inflammatory cytokines to prevent 
systemic inflammation. Additionally, early increments 
of G-CSF and GM-CSF suggest the involvement of 
mobilization and priming of leukocytes, which were 
partly demonstrated later [2,15-17]. These changes 
indicated that each cytokine dynamics and impacts on 
the body might be quite different [2,6,9,10].

Effects of Long Endurance Races on Cytokine 
Response

Our original paper submission on marathon data was 
rejected again and again, and it took several years to 
be published finally in 2000 [18]; it was certain that the 
results were no changes in plasma pro-inflammatory 
cytokines even after a competitive full marathon race, 
and immunomodulatory cytokine IL-2 decreased after 
exercise. However, anti-inflammatory cytokines such 
as IL-1ra, IL-6 and IL-10 increased dramatically after the 
race. These changes might result in immunosuppression 
after exhaustive exercise [2,5,9,18]. On the other hand, 
colony-stimulating factors and chemokines increase 
significantly, which might induce mobilization and 
activation of neutrophils and monocytes, resulting in 
inflammation [18,19].

Particularly, IL-6 increased more than 100 fold 
following a marathon race and was correlated 
with changes in IL-10 [2,7,18,19], the most potent 
immunosuppressive cytokine. IL-6 was also correlated 
with neutrophil count, whereas neutrophil mobilization 
was correlated with changes in the muscle damage 
markers, Creatine Kinase (CK) and myoglobin [20]. 
Interestingly, IL-6 response was also correlated with 

ically strengthened and the prevention/modifications 
are described. Past comprehensive and related reviews 
on cytokine response to exercise are referred to else-
where [2,5-10].

Effects of Short Maximal Exercise on Cytokine 
Response

In the mid-1990s, we had investigated the effects of 
exercise on immune perturbations such as neutrophil 
mobilization and priming following exhaustive exercise 
and the underlying mechanisms [11-13]. As for 
cytokines, at first, we measured serum concentrations 
of TNF-α, IL-1β and IFN-γ before and after maximal 
exercise on a treadmill and 1 h after exercise [13]. 
Although we observed exercise-elicited leukocytosis 
due to increases in large granular lymphocytes, 
monocytes and neutrophils together with enhanced 
neutrophil pseudopod projection and the capacity to 
produce Reactive Oxygen Species (ROS) [11], we could 
not detect the above cytokines at least up to 1 h after 
exercise [13]. It might be partly because the sensitivity 
of the Enzyme-Linked Immunosorbent Assays (ELISA) 
was low at that time, and it was later found that these 
cytokines are not easily increased in the circulation 
after short-time maximal exercise as compared to long 
endurance exercise [2,5,6,10].

In spite of the disappointed results even using 
expensive ELISA kits, we tried once again to investigate 
the time course of changes until 2 h after maximal 
exercise in a broader spectrum of cytokines in plasma 
and urine as well as employing more sensitive ELISA 
[14]. As a result, we found that plasma IL-1β was 
significantly elevated 2 h after exercise by two-fold. 
In urine, IL-1ra increased 15.5 fold 1 h after exercise, 
and TNF-α 5 fold 2 h after exercise. Plasma and urine 
IL-4 levels were significantly elevated in parallel only 2 
h after exercise by 7 fold. Plasma Granulocyte Colony-
Stimulating Factor (G-CSF) was significantly elevated 
immediately after exercise, which remained until 2 
h after exercise. Granulocyte Macrophage Colony-
Stimulating Factor (GM-CSF) in plasma was temporarily 
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Figure 1: Cytokine balance based on helper T (Th) cells. Suzuki K, et al. [2,5].
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and neutrophil priming for ROS production. Plasma 
IL-6 rose significantly and was closely correlated with 
the neutrophil responses, which were also correlated 
with muscle damage markers. These exercise-induced 
responses were strongest on the first day, but the 
magnitude gradually decreased with progressive 
daily exercise, whereas catecholamine responses to 
exercise sessions gradually rose, possibly suppressing 
neutrophil priming and may affect local tissue damage 
of susceptible organs [15,16,20].

Professor Pedersen’s research group in Copenhagen, 
Denmark, has demonstrated that contracting muscle 
produces IL-6 and releases it into the circulation 
depending on the energy demand, and IL-6 mobilizes 
energy substrates in a similar manner to stress hormones 
[29]. Therefore, IL-6 is considered to support energy 
supply and endurance performance and is therefore 
referred to as a myokine [7]. However, it was unclear 
whether IL-6 is released into the circulation in response 
to exercise-induced muscle damage or exercise intensity 
[2,7,20,29].

Dr. Peake from the University of Queensland in 
Brisbane, Australia, investigated the effects of exercise 
intensity and muscle damage on neutrophil activities 
[30]. I assisted in his work by measuring changes in 
several cytokines that regulate neutrophil activity during 
exercise [30-32]. He compared three exercise conditions 
using 10 male endurance-trained athletes. The first 
condition was moderate-intensity, level treadmill 
running at 60% VO2 max for 60 minutes, the second 
conditions was high-intensity, level treadmill running at 
85% VO2 max for 60 minutes [30,31], and the last was 
moderate-intensity downhill running at 60% VO2 max for 
60 min [32]. Figure 3 shows the changes in myoglobin, 
a muscle damage marker. Downhill running caused 
marked increase in myoglobin, indicating that this 
protocol caused more muscle damage than moderate- 

increases in free fatty acids [5], which are an important 
energy substrate during endurance exercise. Another 
interesting observation from our research was that IL-6 
responses were inversely related to individual race time 
(Figure 2) [5]. That is, IL-6 was highest in those athletes 
who run fastest. This observation might be related to 
the effects of IL-6 on the mobilization of free fatty acids 
[21-23]. Although IL-6 has been classified as a multi-
functional cytokine, it might perform several different 
roles during exercise. Also, anti-inflammatory effects of 
IL-10 might be induced for suppression of ROS production 
by neutrophils and monocytes [19]. Furthermore, IL-1ra 
and IL-12p40 might work as antagonists of exercise-
induced inflammation [2,5].

Concerning triathlon and duathlon races [24-
28], muscle damage and inflammation were more 
pronounced, and acute kidney injury was also observed 
[24,27]. On the other hand, time course changes in 
inflammatory markers were examined a longer duration 
race and the recovery and revealed that the triathlete 
recovered almost completely within approximately one 
week using inflammatory markers [28]. However, typical 
inflammatory markers such as C-Reactive Protein (CRP) 
were not sensitive enough in case of exercise, but some 
cytokine responses to exercise were more exaggerated 
in urine [2,26]. As such, experimental research was 
needed for further characterization of each cytokine 
dynamics and their roles in the exercise-induced organ 
damage and inflammation.

Experimental Research on Cytokine Response 
to Endurance Exercise

At first, we have extended the study on repeated 
bouts effects of exercise in relation with hormonal 
changes to analyze adaptation mechanisms regulating 
systemic inflammatory responses of the stressed body 
[20]; endurance exercise induced peripheral neutrophilia 
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Figure 2: IL-6 response and marathon race time. Suzuki K, et al. [5].
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4). Also, IL-1ra increased significantly after high-intensity 
running, but not after downhill running (Figure 5). IL-10 
also increased only after high-intensity running (Figure 
6). These results suggest that systemic release of IL-6, 
IL-1ra and IL-10 depends more on exercise intensity 

and high-intensity level running (Figure 3). However, IL-6 
response was greater after high-intensity level running 
compared with moderate-intensity level running and 
downhill running, indicating that IL-6 response depends 
on exercise intensity rather than muscle damage (Figure 
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Figure 3: Myoglobin increased after downhill running (DHR) compared with moderate-intensity (MI) and high-intensity (HI) 
running. Peake J, et al. [30,31].
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Figure 5: IL-1ra increased after high-intensity (HI) running but not after moderate-intensity (MI) and downhill running (DHR). 
Peake J, et al. [30,31].
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untrained male university student repeated eccentric 
lengthening contraction of the elbow flexors to induce 
muscle damage and inflammation. Using a dumbbell, 
eccentric lengthening contractions were performed, 
and the same protocol was repeated one month later 
as the second bout to explore the mechanisms of the 
muscle adaptation. We measured muscle damage 
markers, cytokines in plasma and urine, and related 
markers of inflammation. In response to the first bout, 
inflammatory signs such as muscle pain and swelling, 
and decreases in range of motion and muscle strength 
occurred (Figure 7). Muscle damage markers, creatine 
kinase and myoglobin, also increased dramatically after 
the first bout (Figure 8). In contrast, these changes were 
much smaller after the second bout, which indicates 

than muscle damage [2,8-10]. Thus, it was considered 
that cytokine responses reflected stress reactions of the 
body.

Effects of Eccentric Exercise on Cytokine Re-
sponse

Although it was initially proposed that IL-6 is released 
into the circulation in response to exercise-induced 
muscle damage, there was little definite evidence to 
support this concept. To further investigate whether 
there is a relationship between muscle damage and 
cytokines, we examined the effects of eccentric exercise 
which causes local muscle damage, but minimal 
metabolic stress with the joint study of Professor 
Nosaka’s research group in Perth, Australia [33-35]. Ten 
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Figure 6: IL-10 increased during high-intensity (HI) running but not during moderate-intensity (MI) and downhill running 
(DHR). Peake J, et al. [30,31].

     

Figure 7: Responses of the elbow flexors to the 1st (●) versus 2nd (○) bouts (4 weeks apart) [33].
ROM: range of motion; MVC: maximal voluntary contraction.
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not detected even using shotgun proteomics (Figure 
10). These findings indicated that muscle damage is not 
the trigger of the systemic cytokine release.

Effects of Energy Supplementation on Cytokine 
Response to Exercise

Energy supply during exercise is important for 
the endurance performance. In a previous study, 
Professor Nieman, at Appalachian State University, 
USA, investigated the effects of carbohydrate drink 
on plasma cytokine levels and muscle cytokine gene 
expression following 3 h of treadmill running at 70% VO2 
max [39]. They demonstrated that carbohydrate drink 
intake reduced plasma IL-6 concentrations and muscle 
IL-6 gene expression. Plasma IL-1ra and IL-10 were also 
reduced by carbohydrate drink. These findings suggest 
that carbohydrate ingestion before and during exercise 
is useful to prevent not only a decline in endurance 
performance by sparing muscle glycogen stores, but 
also exercise-induced muscle damage.

However, some studies reported that carbohydrate 
ingestion after eccentric exercise enhanced the increase 
in circulating IL-6 levels, gene expression of IL-8 and MCP-
1 in skeletal muscle, and muscle soreness [40]. Although 
carbohydrate ingestion after endurance exercise is 
recommended to enhance muscle glycogen synthesis, 

that muscle adaptation occurred between the two bouts 
of exercise. In contrast with these marked changes in 
markers of muscle damage, there were only minor 
changes in plasma inflammatory mediators [33-35].

We measured renal damage markers and urine 
cytokine levels as well to check the possibility that 
plasma cytokines are excreted rapidly from the kidneys 
into urine. However, no significant differences were 
observed in renal damage markers in spite of severe 
muscle damage like rhabdomyolysis, and renal clearance 
was not affected by the local eccentric exercise and 
muscle damage. Interestingly, we observed that there 
were significantly higher and more rapid increases in 
anti-inflammatory cytokines such as IL-1ra and IL-6 in 
the second bout compared with the first bout (Figure 9). 
In summary, although there was severe muscle damage 
after the eccentric exercise, the changes in cytokines 
were quite minor, and considerably smaller than that 
following endurance exercise. Nevertheless, there was 
induction of anti-inflammatory cytokines in the second 
bout, which might help restrict muscle damage.

We had also evidence that plasma and urine cytokine 
levels did not change following local eccentric exercise 
using a calf raise model as well [36-38]. Even though we 
discovered a novel marker of muscle damage in urine, 
N-terminal fragment of titin [38], cytokine changes were 
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Figure 8: Responses of blood parameters to the 1st (●) versus 2nd (○) bouts (4 weeks apart) [33].
CK: creatine kinase; Mb: myoglobin.
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ing the rate of exogenous carbohydrate oxidation. We 
compared the efficacy of carbohydrate consumption 
on immune responses to exercise in temperate vs. hot 
conditions. Ten male cyclists exercised on 2 separate oc-
casions in temperate (18.1 ± 0.4 °C, 58% ± 8% relative 
humidity) and on another 2 occasions in hot conditions 
(32.2 ± 0.7 °C, 55% ± 2% relative humidity). On each oc-
casion, the cyclists exercised in a fed state for 90 min 
at ~ 60% VO2 max and then completed a 16.1-km time 
trial. Every 15 min during the first 90 min of exercise, 
they consumed 0.24 g/kg body mass of a carbohydrate 
or placebo gel. Neutrophil counts increased during ex-
ercise in all trials and were significantly lower after the 
carbohydrate than after the placebo trials in 32 °C. The 
circulating IL-6, IL-8, IL-10, G-CSF, myeloperoxidase and 
calprotectin also increased during exercise in all trials 
but did not differ significantly between the carbohy-
drate and placebo trials. Carbohydrate ingestion attenu-
ated neutrophil counts during exercise in hot conditions, 
whereas it had no effect on any other immune variables 
in either temperate or hot conditions [42,43].

Also, we conducted a study on cytokine responses 
to exercise in warm and cool environments in a joint 
study with Professor Kim at Keimyung University in 
Korea [44,45]. The aims of this study was to investigate 
whether a cool environment affects cytokine responses 
to exercise. Since skating is very popular in Korea, short-

these findings suggest that post-exercise carbohydrate 
ingestion may promote muscle inflammation via the 
promotion of neutrophil and macrophage infiltration in 
skeletal muscle.

We examined the effects of ingestion of different 
amounts of carbohydrate after endurance exercise 
on circulating cytokine levels, neutrophil count, and 
the markers of neutrophil activation and muscle 
damage, and revealed that carbohydrate ingestion 
after endurance exercise did not enhance the exercise-
induced increase in above variables, regardless of the 
amount of carbohydrate ingested [41]. Furthermore, the 
ingestion of a high amount of carbohydrate maintained 
high plasma glucose and insulin concentrations during 
the recovery phase when compared to the ingestion of 
a low amount of carbohydrate. These findings suggest 
that the ingestion of a high amount of carbohydrate 
after endurance exercise provides a favorable condition 
for the recovery from endurance exercise without an 
increase in inflammatory responses and markers of 
muscle damage.

Effects of Environmental Temperature on 
Cytokine Response to Exercise

Heat stress might attenuate the effects of carbohy-
drate on immunoendocrine responses to exercise by 
increasing endogenous glucose production and reduc-
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and then recovered at room temperature for 2 h. Under 
these conditions, the inline skaters who are adapted 
to exercising in warm conditions were exposed to 
unaccustomed stress. Among 4 conditions, when the 
short-track skaters exercised in unaccustomed warm 
conditions (SW), IL-6 increased dramatically, whereas 
for these athletes, this response was reduced when 
exercising in familiar cool conditions (Figure 11). IL-1ra 
(Figure 12) and IL-10 (Figure 13) also shows the highest 
response in SW. Cortisol was elevated immediately 
after exercise, but the most dramatic changes were 
observed in SW (Figure 14). Cortisol responses were 
smaller following exercise in the cool in both groups. As 

track skaters who are adapted to exercise in the cold 
and inline skaters who are adapted to exercise in warm 
conditions were recruited for the study. Both groups 
of athletes exercised in either cool or warm conditions 
on separate days. In the first protocol, inline skaters 
and short-track skaters stayed at room temperature 
for 60 min before cycling at 65% VO2 max for 60 min, 
and then recovered for 2 h. Under these conditions, the 
short-track skaters who were adapted to exercising in 
cool conditions were exposed to unaccustomed stress. 
In the second protocol, the two groups of subjects 
stayed in a cool environment for 60 min before cycling 
at 65% VO2 max for 60 min in the cool environment, 
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and it is recommended to exercise in cooler environ-
ments in the morning.

Other Lifestyle Factors Affecting Cytokine 
Response to Exercise

As for fluid supplementation, we conducted a study to 
evaluate the effectiveness of a hypotonic carbohydrate 
drink that is easy to drink and is rapidly absorbed. That 
is because fluid supplementation in combination with 
carbohydrate ingestion also prevents dehydration and 
heat stroke [3]. Male cyclists completed three cycling 
trials at 60% VO2 max for 90 min in hot conditions [47]. 
Three different drinks were ingested ad libitum during 
90-min cycling; isotonic drink, hypotonic drink and 
water as the placebo control. As for the fluid intake 
during 90-minute exercise, the subjects consumed 

for the muscle damage marker, the pattern of changes 
was different in that muscle damage was greater for the 
inline skaters when they exercised under unaccustomed 
cool conditions (Figure 15). In summary, this study 
demonstrated that cytokine responses to exercise 
depended on stress and body temperature elevation, 
independent of muscle damage. The short-track skaters 
showed marked increases in plasma cytokines in the 
warm, suggesting that cool environments did not cause 
cytokine and stress hormone responses to exercise.

Although pre-exercise cooling can effectively attenuate 
systemic inflammatory response to exhaustive exercise 
[3,6], post-exercise cooling may not have significant ef-
fects [44-46]. During the day, evening exercise induces 
more marked IL-6 release than morning exercise [21], 
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Figure 14: Responses of cortisol to exercise in cool and warm environments [44]. 
I: inline skaters; S: short-track skaters; C: cool; W: warm.
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cise, and endotoxemia occurs, which induces systemic 
inflammation [3,61-63]. Therefore, other countermea-
sures such as intake of some functional foods for gut 
barrier protection, better bioavailability, and distribu-
tion [6,64], and appropriate immune responsiveness 
with reducing inflammation [65-67], should be exam-
ined in future studies.

Conclusive Remarks
Cytokines featured at the forefront of biomedical 

research in 1990s [1] and we have examined the 
effects of exercise on the body and their modulations 
together with underlying mechanisms of action. IL-6 
might enhance endurance performance, but might 
also induce systemic inflammation, muscle damage 
and immunosuppression. It is possible that appropriate 
countermeasures such as consuming energy and fluids, 
and minimizing rises in body temperature during exercise, 
might help to maintain endurance performance without 
causing harmful side effects on the body resulting from 
inflammation.
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more of the hypotonic drink than water. Carbohydrate 
drinks were effective to minimize dehydration, which 
was also confirmed by the plasma volume changes. As 
for the metabolic responses, the isotonic drink caused 
hyperglycemia, whereas the hypotonic drink kept the 
glucose level constant. Exercise induced an increase in 
free fatty acids, but the hypotonic drink was the most 
effective to spare this mobilization in the recovery 
period. Neutrophil responses were reduced post 
exercise by carbohydrate ingestion. Plasma IL-6 response 
was reduced by the hypotonic drink. There were no 
differences in body temperature, heart rate, lactate, 
osmolality, muscle damage markers or cytokines other 
than IL-6. In summary of this drink study, carbohydrate 
significantly reduced free fatty acids and leukocyte 
responses to endurance exercise in the heat, but the 
isotonic glucose drink caused hyperglycemia post 
exercise. The hypotonic drink effectively attenuated IL-6 
responses without inducing IL-1ra and IL-10 responses. 
These results suggest that the hypotonic drink is more 
appropriate to prevent dehydration and immune 
changes compared with the isotonic drink and water.

We have also investigated the effects of ingredients 
of sport drinks to prevent inflammation [41,47-49], 
but an appropriate regime remains to be examined at 
present. Especially, for women, intensive exercise in 
the menstruation phase of the menstruation cycle in-
creases systemic inflammation [50], and energy and 
fluid supplementation during exercise must be consid-
ered depending on the phase [51]. From a nutraceutical 
perspective, curcumin ingestion has reduced muscle in-
flammation after downhill running in a mouse model of 
exercise-induced muscle damage and oxidative stress in 
humans [16,52,53], but the evidence is not sufficient for 
other antioxidant and/or anti-inflammatory substances 
for the prevention of muscle damage and inflammation 
[54-60]. Intestinal permeability increases following exer-
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Figure 15: Responses of myoglobin to exercise in cool and warm environments [44]. 
I: inline skaters; S: short-track skaters; C: cool; W: warm.
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