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Abstract
Liver is the major detoxifying centre of the body. It removes 
xenobiotics and their metabolites through metabolism or 
biliary excretion. Hepatocytes constitute 80% of total liver 
mass and play a major role in storage, synthesis, metab-
olism and redistribution of essential molecules. Liver has 
been known to accumulate > 90% of nanomatrerials trans-
located from other organs. Bioconcentration of nanoparti-
cles may lead to impairment of structure and function of he-
patic cells. Therefore, it is critical to review the information 
available on NP induced hepatotoxicity, underline the gaps 
in our knowledge on their toxicity and propose future strat-
egies for nanosafety.

Present review discusses recent researches available on 
the hepatotoxicity of engineered nanoparticles viz. carbon 
nanotubes (CNTs), nanoparticles of silver (AgNPs), gold 
(AuNPs), platinum (PtNPs), zinc oxide (ZnONPs), cadmium 
sulphide (CdSNPs), titanium dioxide (TiO2NPS), iron oxide 
(IONPs), copper (CuNPs), cerium oxide (CeO2NPs), silicon 
(SiO2NPs) and dendrimers in cell as well as animal models.

In vitro and in vivo studies show that these NPs elicit spe-
cific effects on serum enzymes, inflammatory cytokines, 
oxidative stress, gene expression and morphology of he-
patocytes. Antioxidants like vitamin C and α lipoic acid can 
reverse the cell injury in some cases. Further, protective ef-
fects of ZnONPs and CeO2NPs against experimental hepa-
to-carcinogenesis have also been highlighted. It is suggest-
ed that further efforts are required to address health issues 
concerned with nanomaterials.
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Introduction
It was during the meeting of American Physical So-

ciety (1959) when Richard. P. Feynman asked, “What 
would happen if we could arrange the atoms one by 
one the way we want them”? This meeting gave birth 
to the concept of nanotechnology. The word nano is 
linked to a Greek term “nanos” meaning dwarf. Today, 
nano is popular label in science, technology and medi-
cine. During 1990-2000, new processes for the synthesis 
of nanoparticles (NPs) were developed. In subsequent 
years, health hazards posed by NPs were recognized. 
NPs have emerged as a new class of environmental 
pollutants that may affect atmosphere, terrestrial and 
aquatic ecosystems. Their prevalence in ecosystems 
can be harmful to human beings, animals, plants and 
aquatic species [1]. Furthermore, occupational expo-
sure to NPs during their production, commercial and 
biomedical use may lead different health problems and 
safety issues [2].

The science that mainly addresses safety issues of 
NPs is known as nanotoxicology. It refers to the stud-
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Target Toxicity of NPs
Skin, pulmonary and reticuloendothelial system 

(RES) including liver and spleen have been identified as 
the main target organs for NPs toxicity. NPs are taken 
over by RES through opsonisation [9]. Aside RES, kidney 
may be another organ of NP toxicity. Some fullerenes 
and dendrimers have been known to distribute in renal 
tissue [10,11]. There are many examples of particulate 
induced lysosomal dysfunction. Alterations in lysosom-
al permeability and subsequent release of lysosomal 
enzymes contributed to apoptosis induced by silica mi-
croparticles in alveolar macrophages [12]. Nanoparti-
cles of neodymium oxide [13]; quantam dots [14] and 
fullerenes [15] are also known to induce autophagy in 
vitro.

Absorption of Nanoparticles
Size, shape and surface charge determine the uptake 

of NPs by cells through size selectivity matching their 
endocytic pits. Absorption of NP may occur through 
phagocytosis or pinocytosis. Pinocytosis is further clas-
sified as macropinocytosis where particles > 1 µm are 
absorbed. Other mechanisms are clathrin or caveolae 
mediated endocytosis or clathrin-caveolae independent 
endocytosis. Caveolae are made by plasma membrane 
invaginations of 50-80 nm size containing cholesterol 
and sphingolipid receptors [16,17]. Endocytosis may oc-
cur through lipid rafts that offer suitable platforms to fa-
cilitate assembly of receptors, adaptors, regulators and 
other downstream proteins as a signalling complex [18].

Similarly, clathrin coated pits of 100-200 nm have 
been shown to be associated with scaffold proteins 

ies on interaction between nanostructures and bio-
logical systems. Specific responses are elicited by NPs 
corresponding to their size, shape, composition, surface 
chemistry and aggregation. Nanoparticles have been 
classified into two groups i.e. engineered NPs and in-
cidental NPs [3]. Quantam dots, carbon nanotubes, 
dendrimers and fullerenes which have a diameter < 100 
nm are known as engineered NPs (ENPs). Whereas, ac-
cidentally generated diesel particles are called inciden-
tal NPs. They can enter human body through different 
portals i.e. dermal, respiratory, gastro-intestinal, ocular, 
auditory, intravenous and mucous routes. Their toxicity 
is determined by barrier function and clearance mecha-
nisms at respective portals of entry. Large surface area 
to volume ratio facilitates interactions between cell 
membrane and NPs [4]. Modifications in NPs surface 
may cause undesirable ionic interactions with biological 
systems [5].

To-date, limited information is available on the ab-
sorption and translocation of NPs. Experimental studies 
made in rodents have demonstrated that NPs deposited 
in lungs can translocate to the pulmonary interstitium 
[6]. Translocation of NPs from lungs to secondary or-
gans i.e. liver, kidney, heart and brain depends on their 
physical properties [7]. Translocation of inhaled NPs to 
brain has been associated with neurodegenerative dis-
eases caused by air pollutants [8]. Nevertheless, skin is 
potent barrier to certain nanomaterials. Similarly, NPs 
undergo limited gastrointestinal absorption except in 
environmental or occupational exposures. Smaller, hy-
drophobic and neutral particles are prone to increased 
absorption.
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Figure 1: Cellular uptake of nanoparticles by a macrophage/epithelial cell.
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NPs can interfere with delicate balance of cellular 
homeostasis and thus alter complex intracellular signal-
ling pathways. Possible effects may be genotoxic caused 
by high levels of ROS [34]. Protein or gene expression 
may be altered due to perinuclear localization of NPs 
that may affect the transcription and translation func-
tions [35]. Leaching of metal ions may also modulate 
protein or gene expression [36]. NPs may also interfere 
with cell surface receptors [37]. Specific effects of NPs 
on liver are discussed in following paragraphs.

Carbon nanotubes (CNTs)
Carbon nanotubes were first discovered by Diego 

and coworkers [38]. They are allotropic modifications 
of carbon, represented as a sheet of graphene (single 
layer of graphite) rolled into a cylinder. They are further 
classified as single walled or SWCNT or multi walled or 
MWCNT [39,40]. They are used in numerous technolog-
ical applications including novel drug delivery systems 
[41]. They can interact with macromolecules such as 
proteins and DNA [42]. Several workers have investigat-
ed their toxicity in different systems. Multiwall carbon 
nanotubes induced oxidative stress and cytotoxicity in 
human embryonic kidney (HEK 293) cells [43]. SWCNTs 
also increased malondialdehyde and decreased GSH 
level in mice [44]. Only a few reports are available on 
the hepatotoxicity of CNTs. However, cytotoxicity of 
SWCNTs on hepatoma HG2 cells has been reported [45]. 
A dose-effect relationship on the effects of MWCNTs 
was reported in the liver of Kunming mice exposed to 10 
and 60 mg/kg MWCNT [46]. They reported an increase 
in total bilirubin and AST in MWCNT treated rats as 
compared to PBS treated rats. Gene expression studies 
showed changes in G protein coupled receptors, choles-
terol synthesis, CYP450, TNFα and NFkB signalling path-
ways. An interesting study has shown that rats exposed 
to SWCNT through intratracheal installation exhibited 
NMR based metabonomic changes in the blood plasma 
and liver extracts [47]. It has also been hypothesized 
that CNTs directly induce ROS generation that caused 
oxidative stress to various cells through inflammation 
and apoptosis [48]. Combined hepatotoxic effects of 
MWCNT and cadmium (Cd) were studied in mice [49]. 
These researchers showed that MWCNT reduced hepa-
totoxicity of Cd. These observations were based on their 
findings on serum transaminases, total bilirubin and 
blood urea nitrogen (BUN). They speculated the role of 
metallothionein (MT) in MWCNT toxicity.

Quantum dots (QDs)
The structure of quantum dots has been studied by 

several workers [50,51]. These are special nanocrys-
tals ranging from 1 to 10 nm in diameter. They exhibit 
unique electronic, optical, magnetic and catalytic prop-
erties. QDs show immunotoxiciyty and can induce ox-
idative stress and DNA damage [52]. It has also been 
demonstrated that QDs can cause cell death by lipid 

such as AP-2 and eps-15 [19]. Nevertheless, the specific 
endocytic mechanism by which cells internalize specific 
NPs such as quantam dots remains unknown (Figure 1) 
summarizes some of these mechanisms that may occur 
in a macrophage or epithelial cell.

Interaction of Nps with Biological Molecules
The size and shape of NPs is different from bulk par-

ticles. Therefore, their interaction with biomolecules 
i.e. proteins and lipids has been found to be different. 
They can bind with proteins and form a protein coro-
na. CdSe/ZnS Qds formed a 3.3 nm thick corona with 
human serum albumin [20]. Further protein binding de-
pends on the type of cell/system and the medium used. 
The interaction of NPs with biomolecules undergoes 
conformational changes [21,22]. These conformational 
changes determine cellular health as the immune sys-
tem may treat them as foreign object and may try to 
eliminate them. Protein-NP interaction may allow their 
escape from endocytic route and promote cytotoxicity 
[23]. NPs can enter nucleus in some cases. In in vitro set-
tings, they can cross the placental barrier [24,25]. Their 
accumulation in subcellular structures i.e. endosomes is 
higher than the free ions. NPs can directly interact with 
lipids. They can adhere to membranous lipids causing 
disturbances in membrane fluidity. It facilitates the 
penetration of NPs into the cell bypassing the endocytic 
route [23].

Common Mechanisms of NP Induced Cy-
to-Toxicity

NPs could cause adverse cellular and molecular ef-
fects through several mechanisms. These include gener-
ation of reactive oxygen species (ROS). Cytoskeletal ef-
fects. Intracellular signalling pathways and genotoxicity. 
NPs can generate ROS through different mechanisms. It 
can occur through direct effect as a result of exposure 
to acidic environment or through leached ions [26,27]. 
Their effects on mitochondria may cause the generation 
of ROS [28]. Interaction of NPs with redox active pro-
teins such as NADPH oxidase and cell surface receptors 
may also lead to lipid peroxidation (LPO) [29]). Howev-
er, kinetics of ROS induction can differ between various 
NPs.

Intracellular localization of NPs has been known to 
disrupt the cytoskeleton network. Effects of QDs on cy-
toskeleton have scarcely been studied. No differences in 
pheochromocytoma cells incubated with CdTe QDs for 
72 h were reported [30]. However, significant structural 
changes in actin and tubulin networks of 3T3 fibroblasts 
after incubation with CdSe/ZnSe QDs were demonstrat-
ed [31]. Different surface modifications were also found 
to cause different degrees of cellular effects [32]. More-
over, gold NPs affected the morphology of several cell 
types such as A 549 human carcinoma lung cells [33]. 
Secondary effects caused by cytoskeletal changes are 
yet to be established.
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been investigated by a few researchers. Post-gesta-
tional (1-19 days) administration of AgNPs (25 mg/kg) 
through intra-gastric gavage induced oxidative stress in 
the liver of rat pups. While glutathione peroxidise (GPx) 
activity and reduced glutathione (GSH) levels were de-
creased. Malondialdehyde and caspase-9 levels were 
significantly increased. Histological studies exhibited 
fatty degeneration [63].

Although antimicrobial effects of silver nanoparticles 
are well known, it was found to protect against acet-
aminophen induced hepatotoxicity. Rats were treated 
with three different dosages of AgNPs (50, 100, 150 µg/
kg p.o.) after APAP treatment (2 g/kg p.o. once only). 
Serum enzymes values and bilirubin level declined after 
AgNP treatment. This report further suggests a thera-
peutic value of AgNPs [64].

Recently, a few authors have studied the molecular 
toxicity of AgNPs on liver microsomal fraction. NPs (5-80 
nm) were administered daily to growing Wistar rat for 
92 days. Electrophoretic studies revealed the presence 
of proteosome activator complex (Psme 1) and heat 
shock protein (HSPd 1) gene. AgNP treatment caused 
the disappearance of protein of B-2α tubulin chain 
(tuba 1b gene) from the microsomal fractions [65]. Mo-
lecular aspects of AgNPs toxicity along with ultrastruc-
tural changes were reported by a group from Thailand. 
Microarray study revealed up and down regulation of 
those genes that were not up or down regulated by Ag 
ion exposed cells. Hep G2 cells in AgNP treated group 
showed distorted ultrastructural changes [66].

Gold nanoparticles (AuNPs)
 The use of AuNPs in nanomedicine has been sug-

gested by a few scientists. Contrarily, a few authors 
found them to be toxic. Thus biosafety issues related 
with AuNPs have raised concerns for human health. A 
few researchers following standard procedures/pro-
tocols have confirmed its hepatotoxic effects. Healthy 
and damaged liver of mice showed differential effects 
of AuNPs in mice. Hwang, et al. [67] first induced liver 
injury in mice by feeding them with methionine choline 
deficient diet and then subjected them to AuNPs treat-
ment. They recorded higher values for ALT, AST and ROS 
in the mice. They concluded that AuNPs display toxicity 
in stressed liver. Another study from Reshi and coau-
thors contradicted these results [68]. They showed that 
AuNPs ameliorate APAP induced hepatotoxicity in albi-
no rats. They considered AuNPs as potential hepatopro-
tective agents. It has been demonstrated that intraper-
itoneal administration of AuNPs induces liver damage 
through oxidative stress. These effects are alleviated by 
melanin (an antioxidant) treatment [69].

Coating AuNPs with suitable carrier molecules was 
also found to affect their toxicity. Polyethylene gly-
col (PEG) coated AuNPs were less toxic than uncoated 
particles. These observations were made based on the 

peroxidation of human neuroblastoma cells [53]. Hep-
atotoxicity of QDs in the liver of man and animals has 
also been studied by a few workers. These results are 
summarized in the following paragraphs.

Silver nanoparticles (AgNPs)
Silver from ancient times has been used as a ther-

apeutic element. However, silver nanoparticles have 
been used for their antimicrobial activity. Very few 
workers have studied the cytotoxicity of AgNPs. The ef-
fects of different dose regimen on hepatotoxicity of Ag-
NPs in rat have been studied by a few researchers [54]. 
They performed liver function tests and recorded the 
bioaccumulation of AgNPs in liver. Though elevated val-
ues for ALP were observed, other parameters showed 
no significant changes in comparison to controls.

Contrarily, hepatoprotective effects of AgNPs 
against CCl4 induced hepatotoxicity were observed [55]. 
Authors used AgNPs synthesized using aqueous leaf ex-
tract of a mangrove based plant Rhizophora apiculata. 
In other reports, edema and necrosis in the liver of male 
ICR mice after a single intravenous (8 µmol/kg) injection 
of AgSe (5.1 nm) QDs were observed [56,57]. However, 
mechanisms of cytotoxicity expressed by AgNPs have 
not yet been established. Silver ions released from me-
dicaments may enter circulation facilitating transloca-
tion and accumulation in soft organs like liver and kid-
ney [58].

Effects of two dose regimen i.e. 20 and 50 ppm (14 
days) of silver nanoparticles on liver function of BAL-
B/C mice were also studied [59]. These workers noticed 
that level of serum transaminases viz: alanine amino-
transaminase (ALT) and aspartate transaminase (AST) 
increased significantly in AgNP treated mice. No signifi-
cant difference was noted in male and female mice.

A study made on approximately 8.7 nm silver 
nanoparticles administered in albino rats for 28 days at 
1, 2, 4 mg/kg b.w. concluded that AgNps induced hep-
atotoxicity through oxidative stress mechanisms. Bioac-
cumulation of AgNPs in liver and chromosomal aberra-
tions in bone marrow was also recorded [60]. Oxidative 
stress induced by AgNPs was found to be a dose depen-
dent phenomenon. Administration of 10 nm citrate sta-
bilized AgNPs at 0.2 mg/kg b.w. to male Wistar rats for 
14 days induced mild oxidative stress in brain but not in 
the liver [61]. A few researchers have attributed AgNPs 
toxicity to its preferential accumulation in liver. AgNPs 
in combination with copper and boron as a composite 
in the dose range of 1-20 mg/kg on early (4-24 h) acute 
exposure and late phase (96 h) exposure in normal and 
NLRP-3 deficient mice were found to cause acute liver 
injury. Elevated values for ALT, AST and LDH along with 
necrosis, Kupffer cell hyperplasia and lobular granulo-
mas were observed [62].

Developmental hepatotoxicity of AgNPs has also 
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nusoidal dialatation, Kupffer cell hyperplasia, inflamma-
tory cells infiltration, necrosis, hydropic degeneration, 
apoptosis, karyolysis, glycogen depletion and haemo-
siderosis were reported [79].

 It was postulated that ZnONPs offered protection 
against dimethylnitrosamine induced hepatotoxicity in 
rat by inhibiting oxidative stress. Moreover values of 
proinflammatory cytokines viz: TNF-α and IL-12 were 
also reduced [75].

A comparison of hepatotoxic effects of zinc nanopar-
ticles and zinc oxide nanoparticles in rat has also been 
made. Intraperitoneal administration of these particles 
increased the activity of gamma glutamyl transferase 
(GGT), lactate dehydrogenase (LDH) and caspase-3. In-
duction of TNF-α was also registered. They concluded 
that zinc nanoparticles are less toxic than ZnONPS [80].

Cadmium nanoparticles (CdSNPs)
Hepatotoxicity of cadmium microparticles on liv-

er and other organs of man and experimental animals 
have been studied in the past by several laboratories. 
However, toxicity of cadmium nanoparticles is poor-
ly known. It was shown that Cd/Se/Te based quantam 
dots 705 modulated liver redox balance in mice [81]. A 
dose dependent increase in metallothionein expression 
and liver function impairment was noted. Further a cor-
responding increase in oxidative stress, oxidative DNA 
damage and inflammation was noticed. QDs activated 
NLRP3 and pyroptosis. It was attributed to mitochondri-
al ROS and Ca2+ mobilization [82]. Hepatotoxicity of Cds 
nanoparticles of different size/length was also studied 
[78]. It was interesting to note that hepatotoxicity of 
smaller CdSNP was greater than the larger CdS NPs.

Titanium dioxide nanoparticles (TiO2NPs)
Titanium dioxide nanoparticles (TiO2NPs) are now 

widely used in food, cosmetics, agriculture, medical de-
vices and building engineering related processes. Their 
effects on human health have recently been reviewed. 
Liver disorders caused by TiO2NP were reported to in-
crease the level of serum trans-aminases, LPO and ox-
idative stress in Wistar rats treated with 300 mg/kg of 
TiO2NP for 14 days by gavage [83]. These researchers 
showed that glycyrrhizic acid (GA) protected the rats 
against hepatic injury caused by TiO2NP. In vitro and in 
vivo toxicity of TiO2NP enhanced under oxidative stress 
conditions. A study made on BRL-3A liver cells and in 
the liver of Sprague-Dawley (SD) rat suggested a syner-
gy between oxidative stress and TiO2NP induced hepa-
to-toxicity [84]. Further cell death ratio was significantly 
enhanced (up to 2.62 fold) in BRL-3A cells exposed to 
OS and TiO2NP. A comparative study on the hepato-
toxicity of TiO2NPs and sodium oleate coated iron ox-
ide nanoparticles (OC-Fe3O4NPs) was made in Wistar 
rat [85]. Based on results on redox defences, these re-
searchers concluded that OC-Fe3O4NPs do affect redox 

results on serum transaminases and histopathological 
findings [70]. Coating of AuNPs with citrate and chitosan 
also affected the hepatotoxicity of AuNPs. Chitosan 
capped NPs were less toxic than citrate capped ones in 
Swiss mice. This observation was made by after analys-
ing the inflammation related genes using RT-PCR [71].

Platinum nanoparticles (PtNPs)
Platinum nanoparticles (PtNPs) are widely used in 

cosmetics, industry and diagnostics. On absorption, 
nanoplatinum can accumulate in soft tissues viz: liver, 
spleen, kidney, lungs and heart. A study from Poland 
recently reported that PtNPs can induce DNA damage 
and apoptosis in liver [72]. Dose dependent hepato and 
renotoxicity of PtNPs has also been demonstrated. NP 
of 1 nm diameter when administered with CCl4 or cis-
plastin induced hepatotoxicity whereas those of 8 nm 
did not exaberate the toxicity in mice [73]. Toxic effects 
of subnanosized platinum particles (snPt) in mouse liv-
er were also studied. Increased levels of inflammatory 
cytokines and histopathological changes in liver of mice 
were observed after intravenous administration of snPt 
at 15 mg/kg body weight. However, administration of 
nanosized platinum particles did not produce these ab-
normalities [74].

Zinc oxide nanoparticles (ZnONPs)
 Nanoparticles of zinc are better known for their 

hepatoprotective than hepatotoxic effects. Zinc oxide 
nanoparticles (ZnOPs) are widely used in cosmetics, 
sunscreens, clothes,medicine and electronic devices. 
Several studies demonstrate that ZnOPs induce oxida-
tive stress and apoptosis in hepatocytes [75]. Further-
more, a study showed that ZnOPs at 200 mg/kg and 
400 mg/kg given through gavage to mice for 90 days in-
duced focal necrosis and increase in AST and ALT values 
[76]. In addition, mRNA expression level and ER stress 
related genes (grp78, grp74, pdi-3, xbp-1) were also up-
regulated. These workers reported upregulation of ER 
stress associated apoptotic protein levels viz: caspase-3, 
caspase-9 and caspase-12.

Hepatotoxicity of Mn doped ZnS nanoparticles in 
mice were also studied by the same group of research-
ers [77]. They estimated ALT, AST, catalase, glutathione 
peroxidise, superoxide dismutase and malondialdehyde 
in the liver of Mn doped ZnSNP treated mice. Mn doped 
ZnSNP did not cause any obvious damage to liver. Con-
tribution of QDs in hepatocyte pyroptosis and inflam-
mation has also been investigated. QDs expressed cy-
totoxicity in LO2 cells in a dose dependent manner [78]. 
QDs activate NLP pyrin domain containing 3 (NLRP3) 
inflammosome in hepatocytes leading to a novel pro-in-
flammatory form of cell death called pyroptosis. NLRP3 
activation was caused by QDs triggered mtROS produc-
tion and Ca(2+) mobilization. In another study, ZnONPs at 
a daily dose of 2 mg/kg for 21 days administered to male 
Wistar rats induced structural changes in the liver. Si-
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ER stress induced by several nanoparticles has recently 
been discussed by Rana [94]. NPs have been shown to 
modulate the cross talk between mitochondria and ER. 
Human hepatic L02 cells when exposed to USPIO- NPS 
(2.5, 7.5 and 12.5 µg/mL) for 6 hr did not cause hepatic 
injury. However, it induced apoptosis at 20 µg/mL after 
24 hr. It was postulated that the injury is mediated by 
Cox-2 genes [95].

Copper nanoparticles (CNPs)
Copper nanoparticles (CNPs) work as anti-biotic, an-

ti-microbial and antifungal agents when added to plastic 
items and textiles. They are used in conductive inks and 
pastes as a substitute for expensive metals in electronic 
displays and transmissive conductive thin film applica-
tions. Toxicity of CNPs is not fully understood. Howev-
er, available data show that CNPs at a high dose (200 
mg/kg/d for 5 days) could induce overt hepatotoxicity 
in rats. An integrated metabolomic study revealed mi-
tochondrial failure, enhanced ketogenesis, fatty acid β 
oxidation and glycolysis to contribute in its toxicity [96]. 
High dose(s) of CNPs could elevate serum enzymes, tri-
glytcerides and bilirubin. Histopathological observations 
exhibited necrosis. Further, gene expression studies in-
dicated that genes related to oxidoreductases, metab-
olism and signal transduction pathways were involved 
in the development of hepatotoxicity [97]. CNPs have 
been found to be toxic in fish also. A fresh water fish, 
Cyprinus carpio, when exposed to CNPs and CuO at 0.5, 
1.0 and 1.5 mg/L showed higher values for malondialde-
hyde in the liver. It was concluded that LPO contributes 
in the hepatotoxicity of CNPs [98].

Amelioration of CNPs induced hepatotoxicity by ex-
tracts of green tea has also been reported [99]. Theses 
researchers concluded that green tea offered protec-
tion against hepatotoxicity of CNPs (20-30 nm) admin-
istered at a dose of 40 mg/kg/b w. Green tea improved 
the activity of liver enzymes, antioxidant status and 
suppressed DNA fragmentation and the expression of 
caspase-3 and Bax proteins. Another agent that offered 
protection against CNPs induced liver damage was α li-
poic acid [100]. Status of LPO, NO, copper and apoptotic 
genes (c-myc and c-jun) improved in CNPs treated rats 
when co-adminstered with α lipoic acid. These results 
suggest that CNPs induce hepatotoxicity through oxida-
tive stress in rat.

Cerium oxide nanoparticles (CeO2NP)
Cerium is the second member and the most reactive 

element in the lanthanide series. Cerium oxide (CeO2/
ceria) is considered the most suitable oxide of cerium. 
Ceria nanoparticles demonstrate the formation of more 
oxygen vacancies. The large surface area to volume ra-
tio in its nanoparticle enables CeO2 to react differently 
resulting in unique properties.

Nanoceria is used in solid oxide fuel cells, cata-

enzymes but liver is able to retain its functional integri-
ty. TiO2NPs were also found to affect metabolic function 
of liver. In a study made in mice treated with TiO2NP 
(21 nm) for 14 days, ultrastructural changes viz: Mito-
chondrial oedema and gene expression variations were 
noticed [86].

A few studies have been made to investigate the 
reversal of TiO2NP toxicity by antioxidants. Oxidative 
stress induced by TiO2NPs and TiO2 bulk particles (150 
mg/kg) in the liver of Sprague-Dawley rats was reversed 
by extracts of a common herb cinnamon (Cinnamonium 
cassia). Morphological as well as haematological im-
provements were also recorded [87]. In another study, 
tiron was also found to protect against the toxicity of 
TiO2NPs. While TiO2NPs upregulated the proapoptotic 
Bax gene and down regulated the antiapoptotic Bcl-2 
gene, tiron upregulated Bcl-2 and decreased Bax ex-
pression. These results were supported by observations 
on serum enzymes and histopathological changes [87]. 
Moreover, quercetin and idebenone also ameliorated 
hepatotoxicity caused by TiO2NPs. These antioxidants 
modulated serum enzymes, VEGF, NO, DNA damage in 
the liver of TiO2NP treated rat liver [88].

Protective role of vitamin A and vitamin E against liv-
er injury caused by TiO2NPs in male Wistar rat has also 
been determined. Enzyme biomarkers of liver function, 
histopathological changes, antioxidant enzymes and in-
flammatory mediators were increased in TiO2NPs (300 
mg/kg) treated rats. Vitamin A and E both inhibited 
these parameters showing an ameliorative effect [89].

Iron oxide nanoparticles (IONPs)
Iron oxide nanoparticles are used in different disci-

plines of diagnostic science, biomedical sciences and 
drug delivery systems. On penetration, IONPs are taken 
up by cell organelle (endosomes/lysosomes) especial-
ly in hepatocytes. They contribute to cellular iron pool 
and release into cytoplasm after decomposition. Mag-
netic iron oxide nanoparticles can accumulate in liver, 
spleen, lungs and brain after inhalation. It shows their 
ability to cross the BBB [90]. Enzyme biomarkers of liv-
er function viz: AST, ALT, and LDH increased in the liver 
of rats treated with different concentration of IONPs. 
In IONPs exposed rats at three concentrations i.e. 500, 
1000, 2000 mg/kg, an increase in serum transaminas-
es at all concentrations was recorded [91]. Whereas, 
exposure of rats to bulk iron oxide exhibited no effect. 
Another study reported that a dose of 10 mg/kg of dex-
tran coated IONPs do not affect functional integrity of 
liver in Wistar rat [92]. A few studies have been made 
to observe the effects of superparamagnetic nanoparti-
cles (USP IO-NPs) on LO2 cells [93]. These particles could 
induce cytotoxicity and caused leakage of LDH. These 
particles affected several genes especially those relat-
ed with calcium homeostasis and inflammation i.e. IL, 
1B, IL6 and IL8. USP IONPs can cause ER stress as well. 
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ica nanoparticles (MSN) induced ROS generation [110]. 
A recent study suggested that SiONPs (10 nm) make 
profound changes in morphometry, biochemistry, he-
matology and genes expression of DMES in rat [111].

Dendrimers
The term dendrimer comes from a Greek word 

meaning “Dendron”. Dendron is translated into a tree. 
A dendrimer possesses a symmetric structure around a 
core. A dendrimer molecule has hundreds of possible 
sites to couple to an active species. It possesses a hydro-
phobic core and hydrophilic periphery. It exhibits a mi-
celle like behaviour. Dendrimers have been explored for 
encapsulation/scaffolding of hydrophobic compounds 
and anticancer drugs.

There are certain anticancer drugs i.e. methotrex-
ate and 6-mercaptopurine that exhibit hepatotoxicity. 
When these drugs were encapsulated by the dendrimer 
based melamine and administered in C3H mice at sub-
chronic doses, significant reduction in hepatotoxicity 
was observed [112]. Subsequently, the same group of 
researchers showed that melamine dendrimer given 
at 40 mg/kg to mice resulted into hepatotoxicity as de-
termined through serum enzymes and histopathologi-
cal changes [113]. Role of their route of administration 
was also discussed [114]. It was interesting to note that 
the nanomaterials such as poly-amidoamine (PAMAM) 
that are widely used in pharmaceutical industry caused 
hepatotoxicity through growth inhibition, mitochondri-
al injury and apoptosis in human liver cells. Blockage of 
autophagy in PAMAM treated mice led to hepatopro-
tection [115].

Conclusion and Perspectives
In recent times, nanoparticles have emerged as a 

new class of environmental pollutants. Additionally, oc-
cupational exposure to NPs may contribute to some un-
known health issues in humans. Their toxicity is deter-
mined by barrier functions and clearance mechanisms 
at respective portals of entry. Experimental studies 
demonstrate their adverse effects on skin, lungs, liver, 
kidney, heart and brain of experimental animals. The 
interaction between NPs and biomolecules causes con-
formational changes that determine cellular health. The 
adverse effects are categorized as autophagy, apopto-
sis, necrosis, pyroptosis, oxidative stress, cytoskeleton 
changes and altered intracellular signalling pathways. 
Change in gene and protein expression affects tran-
scription and translation functions.

Present review summarizes the specific hepatotoxic 
effects of ENPs. To note, CNTs can directly induce oxida-
tive stress, inflammation and apoptosis, whereas, silver 
NPs could cause edema and necrosis. They exhibit pro-
tective effects against liver injury caused by CCl4 and ac-
etaminophen. It is interesting to note that subnanosized 
platinum nanoparticles cause increased secretion of in-

lytic applications and photocatalysis. Recently it has 
drawn considerable attention as a therapeutic agent 
in the treatment and prevention of diseases associat-
ed with oxidative stress. A few reports are available on 
its hepato-protective rather than hepato-toxic effects. 
D-galactosamine and lipo-polysaccharide induced hep-
atotoxicity in rat was alleviated by CeO2 [101]. These 
workers showed that CeO2NP decreased translocation 
of cytoplasmic Nrf-2 with concomitant decrease in gene 
expression of HO-1. These effects were attributed to 
its antioxidative properties. Results on antioxidant en-
zymes and histopathological observations supported 
this conclusion. Another evidence of antioxidative po-
tential of CeO2 is provided by experiments made on 
monocrotaline induced hepatotoxicity in mice [102]. 
It was shown that monocotaline induced decrease in 
hepatic GSH, GPx, GR and GST is normalized after the 
treatment of CeO2NPs.

A recent study showed that CeO2NP offered protec-
tion against diethylnitrosamine induced hepatotoxicity 
in mice. Pretreatment of CeO2NPs attenuated the activ-
ity of antioxidant enzymes and expression of Bcl2 and 
Cox2. This report again supports the antioxidative role 
of CeO2NPs [103].

Silicon nanoparticles
Silica nanoparticles are employed in several com-

mercial, agriculture and medical applications. However, 
the information on their health effects remains elusive. 
A few studies are available on their effects on structure 
and function of liver. Size of silica nanoparticles seems 
to be a confounding factor in their toxicity. It was report-
ed that silica particles having a diameter of 300 to 1000 
nm elicited no adverse effects while SP-70 could induce 
liver injury at 30 mg/kg b.w. [104]. Repeated adminis-
tration of SP-70 twice a week for four weeks at 10 mg/
kg b .w. caused hepatic fibrosis. Serum enzyme markers 
were also increased. Hasezaki, et al. also confirmed that 
SP-70 is potent hepato-toxin [105]. Silica nanoparticles 
(14 nm) were found to induce apoptosis in human liver 
(HepG2) cells that was regulated by ROS through p53, 
bax/bcl-2 and caspase pathways. ROS scavenger, vita-
min C modulated apoptotic markers [106].

There are reports suggesting that SiO2NPs (10-80) 
when administered to rats (nm) disturb tricarboxylic cy-
cle and liver metabolism. It can induce oxidative stress 
and alter liver cell morphology (150 µg) for 90 days 
[107]. Another study supported these results through 
global metabolomic study on SiNPs treated human 
hepatoma cells (HepG2) and ICR mice liver. This study 
concluded that glutathione metabolism and oxidative 
stress are amongst the principal causes of SiNP induced 
hepatotoxicity [108]. SiNPs influence CYP450 both in rat 
and human hepatocytes [109]. In addition to apopto-
sis, SiNPs can induce pyroptosis through NLRP3 inflam-
masome activation which is caused by mesosporous sil-
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ly the most important determinant in their in vivo disposition 
after intravenous administration in rats. J Control Release 
77: 191-198.

10.	Lee CC, Mackay JA, Frechet JM, Szoka FC (2005) Design-
ing dendrimers for biological applications. Nat Biotechnol 
23: 1517-1526.

11.	Nigavekar SS, Sung LY, Llanes M, El-Jawahri A, Lawrenc-
es TS (2004) 3H dendrimer nanoparticle organ/yumor dis-
tribution. Pharm Res 21: 476-483.

12.	Thibodeau MS, Giardina C, Knecht DA, Helble J, Hubbard 
AK (2004) Silica induced apoptosis in mouse alveolar mac-
rophages is initiated by lysosomal enzyme activity. Toxicol 
Sci 80: 34-48.

13.	Chen Y, Yang, L, Feng C, Wen LP (2005) Nano neodym-
ium oxide induces massive vacuolization and autophagic 
cell death in non small cell lung cancer NCl-H460 cells. Bio-
chem Biophys Res Commun 337: 52-60.

14.	Selverstor O, Zabimyk O, Zscharmack M, Balavina L, No-
wicki M (2006) Quantam dots for human mesenchymal 
stem cell labelling. A size dependent autophagy activation. 
Nano Lett 6: 2826-2832.

15.	Yamawaki H, Iwai N (2006) Cytotoxicity of water soluble 
fullerenes in vascular endothelial cells. Am J Physiol Cell 
Physiol 290: C1495-C1502.

16.	Lajoie P, Nabi I R (2007) Regulation of raft dependent en-
docytosis. J Cell Mol Med 11: 644-653.

17.	Pelkmans L, Puntener D, Helenius A (2002) Local actin 
polymerization and dynamin recruitment in SV-40 induced 
internalization of caveolae. Science 296: 535-539.

18.	Zhang LW, Monteiro-Riviere (2009) Mechanism of quantum 
dot nanoparticle cellular uptake. Toxicol Sci 110: 138-155.

19.	Swanson JA, Watts C (1995) Macropinocytosis. Trends 
Cell Biol 11: 424-428.

20.	Rocker C, Potzt F, Zhang WJ, Parak GU (2009) A quan-
titative fluorescence study of protein monolayer formation 
on colloidal nanoparticles. Nat Nanotechnology 4: 577-580.

21.	Lacerda SH, Park JJ, Meuse C, Pristinski D, Becker ML, 
et al. (2010) Interaction of gold nanoparticles with common 
human blood proteins. ACS Nano 4: 365-379.

22.	Mahmoudi M, Shokrrgozar MA, Sardari S, Moghadam MK, 
Vali H, et al. (2011) Irreversible changes in protein confir-
mation due to interaction with superparamagnetic iron ox-
ide nanoparticles. Nanoscale 3: 1127-1138.

23.	Lin J, Zhang H, Chen Z, Zheng Y (2010) Penetration of 
lipid membranes by gold nanoparticles: Insights into cellu-
lar uptake, cytotoxicity and their relationship. ACS Nano 4: 
5421-5429.

24.	Gu YJ, Cheng J, Lin CC, Lam YW, Cheng SH, et al. (2009) 
Nuclear penetration of surface functionalized gold nanopar-
ticles. Toxicol Appl Pharmacol 237: 196-204.

25.	Chu M, Wu Q, Yang H, Yuan R, Hou S, et al. (2010) Trans-
fer of quantum dots from pregnant mice to pups across the 
placental barrier. Small 6: 670-678.

26.	Stroh A, Zimmer C, Gutzeit C, Jakstadt M, Marschinke F, 
et al. (2004) Iron oxide particles from molecular magnetic 
resonance imaging cause transient oxidative stress in rat 
macrophages. Free Rad Biol Med 36: 976-984.

27.	Jain TK, Reddy MK, Morales MA, Leslic-Pelecky DL, 
Labhasetwar V (2008) Biodistribution, clearance and bio-
compatibility of iron oxide magnetic nanoparticles in rats. 
Mol Pharm 5: 316-327.

flammatory cytokines. Smaller CdSNPs induce greater 
hepatotoxicity than larger NPs. Earlier studies demon-
strated TiO2NPs affect metabolic function of liver. IONPs 
were found to cause ER stress. Copper nanoparticles can 
cause mitochondrial failure. However, CeO2NPs offer 
protection against dimethylnitrosamine toxicity. Avail-
able reports indicate that redox imbalance is the prin-
cipal cause of SiNP induced hepatotoxicity. Dendrimers 
do affect growth inhibition, mitochondrial function and 
induce apoptosis.

These observations suggest that there appears an 
urgent need to develop nanosafety research. In vitro 
studies on NP toxicity on new models like hepatocyte 
like cells derived from puripotent stem cells using tox-
icogenomic tools have opened new avenues in NP re-
search [116]. Further research on molecular toxicology 
of NPs as well as on their therapeutic values is warrant-
ed. Defining the interactive mechanism between NPs 
and biological molecules will be helpful in designing saf-
er nanomaterials.
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