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Abstract
Retinoids and its derivatives are known to regulate tumor pro-
gression. Our previous study in Colorectal Cancer (CRC) has 
shown that the expression of LRAT, a gene converts ex-
cess retinol into retinyl ester to balance retinoids homeo-
stasis, may be regulated by its promoter methylation status 
to modulate the retinoids synthesis. In this report, we begin 
to explore the potential mechanism of LRAT mediated ret-
inoid metabolism. Our data indicate CRC patient of LRAT 
hypermethylation associated with better prognosis. A con-
sistent finding is shown in siRNA mediated LRAT silencing, 
which leads to slow growth of CRC cell lines. We have also 
observed favorable CRC prognosis occurred in patients of 
both LRAT and RAR-beta hypermethylation, suggesting the 
better CRC prognosis may be mediated through RAR beta 
independent pathway.
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lyzed to retinol. Retinol can also be synthesized from 
the pro-vitamin A carotenoids (β-carotene, α-carotene 
and β-cryptoxanthin) found in fruits and vegetables 
such as carrots, cantaloupe, broccoli and dark green 
leafy vegetables. In the cytosol, retinol is oxidized to 
retinaldehyde by Retinol Hydrogenases (RDHs) or Al-
cohol Dehydrogenases (ADHs) and then to retinoic acid 
by Retinaldehyde Dehydrogenases (RALDHs). Excess of 
retinol can be converted to retinyl esters by the enzyme 
Lecithin:Retinol Acetyltransferases (LRAT) and stored in 
the liver.

Colorectal Cancer (CRC) is one of the leading causes 
of cancer related deaths. Studies have shown altering 
retinol metabolism may have chemotherapic benefits 
on CRC [1,5-8]. For example, the most active metabo-
lite of retinol, retinoic acid, is transported to cell nucle-
us where it binds to the Retinoic Acid Receptors (RAR 
α,β,γ), stimulates downstream gene expression, affects 
cell cycle progression, and leads to cancer cell growth 
inhibition. The challenge of using retinoic acid in cancer 
chemotherapy is that the expression of RARs is often 
lost at advanced tumor stages, rendering the poor ef-
ficacy of retinoic acid treatment. This phenomenon of 
retinoic acid resistance has been shown partly due to 
epigenetic changes such as aberrant histone modifica-
tion and DNA methylation to silence RAR gene expres-
sion.

Previously, we have shown frequent LRAT hyper-
methylation in earlier (I/II) than in later (III/IV) CRC stag-

SHORT COMMUNICATION

Introduction

The retinoids, a group of compounds that include 
retinol (vitamin A) and its metabolites, play a funda-
mental role in normal cell growth, differentiation and 
apoptosis [1-4]. Retinol is regularly obtained from the 
diet. In animal products such as meat and eggs, retinol 
is stored in the form of retinyl esters. Upon digestion, 
the retinyl esters are released and subsequently hydro-
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RNA (siRNA) which was designed to target the human 
LRAT sequence (NM_004744) position 3272-3296, with 
the sense targeting sequence: CAAGGAGGGAGGAU-CA-
CAAGGUCAG. A duplex Dicer-substrate siRNA with a 
scrambled sequence (DS ScrambledNeg) that does not 
target any sequence in the human genome was used 
as a universal negative control. For each condition, 3 × 
103 CRC cells were seeded in each well of the 96-well 
plates on day one and assayed in triplicates. A final 10 
nM siRNAs were transfected into DLD1 and HT29 cells 
using RNAiMax (Invitrogen) under the manufacturer 
recommended condition, in the presence or absence of 
retinol. LRAT RNAs were measured 48 hours after trans-
fections using qRT-PCR to determine the transfection 
and knockdown efficiencies. Cells were harvested every 
24 hours after the first two-day of transfection and sub-
jected to a MTT cell proliferation assay (ATCC).

As shown in Figure 2, in the absence (0 µM) of ret-
inol, there was no difference in cell proliferation be-
tween LRAT knockdown and control cases. Remarkably, 
in the presence of 1 µM retinol, LRAT knockdown cells 
showed slower growths than the controls. These results 
imply that reduced LRAT expression is linked to a slow 
proliferation of CRC cells mediated by retinol, and may 
underlie the association between LRAT methylation si-
lencing and a better prognosis of CRC.

An explanation to LRAT-involved slow cell prolifera-
tion may attribute to mechanisms of retinol mediated 
CRC growth inhibition. Reduced LRAT expression impairs 
the esterification of excess retinol. The unconverted ret-
inol is then metabolized into retinoic acid and contrib-
utes to antiproliferation effects likely through a Retinoic 
Acid Receptor (RAR) pathway [13]. Alternatively, sever-
al publications have proposed another mechanism sug-
gesting a RAR-independent pathway for retinol-mediat-
ed growth inhibition of CRC and melanoma cells [1,2,14]. 
Our data also suggest that LRAT methylation silencing 
facilitates the utilization of retinol in regulating cellular 
proliferation. Furthermore, our analysis of RAR methyl-

es [9]. This inverse relationship between CRC stages and 
the hypermethylated LRAT instances is a tumor-specific, 
non-random event (p < 0.0001). We have also demon-
strated that LRAT hypermethylation is independent 
of tumor MSI status; therefore, this LRAT methylation 
pattern is not a typical MSI feature of possessing many 
hypermethylated genomic loci. In this study, we begin 
to explore the aberrant LRAT hypermethylation and its 
relationship to CRC clinical outcomes.

Results and Discussion

In many cancers, the majority of aberrant promoter 
hypermethylation are positively correlated with tumor 
stages [10]. Namely, the high instances of hypermeth-
ylated promoters are more often seen in late tumor 
stages, such as RAR promoter hypermethylation seen 
in CRC. Since patients with early-stage CRC are known 
to have better outcomes [11], and the high instances of 
LRAT hypermethylation occurs in early-stage CRC, one 
may predict a favorable prognosis of LRAT hypermeth-
ylated CRC cases. As shown in Figure 1A, Kaplan-Meier 
survival analysis was performed on 123 CRC cases with 
known LRAT methylation status. All these samples are 
microsatellite stable and none colonic polyps, ensur-
ing the survival analysis is not biased towards a better 
outcome (e.g. MSI) or skewed towards early CRC stag-
es (e.g. polyps). Interestingly, patients with LRAT hy-
permethylation did present a favorable prognosis (p = 
0.03). Consistent with our finding, a recent study has 
also demonstrated high expression of LRAT in melano-
ma metastases was inversely correlated with patient 
survival [12]. Our data suggest that the frequent LRAT 
hypermethylation may represent a useful predictor to 
stratify CRC. Since LRAT promoter hypermethylation re-
sults in decreased gene expression, we hypothesize that 
reduced LRAT gene expression may involve a defending 
or counteracting mechanism to CRC tumorigenesis.

To further investigate the impact of reduced LRAT 
expression on the growth of CRC cells, DLD1 and HT29 
cell lines were transfected with LRAT small interfering 
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Figure 1: Kaplan-Meier survival analysis of CRC tissues with (A) LRAT hypermethylation status; (B) LRAT and RARβ combined 
hypermethylation status.
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ferentiation and apoptosis. Future studies to investigate 
LRAT’s roles in each of the retinol mediated inhibitory 
mechanisms will shed light on this interesting topic.
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Figure 2: siRNA targets LRAT in CRC cell lines. The optical density was measured at 450 nm for cell proliferation assay. Red 
and blue curves represent the presence or absence of LRAT interference treatment, respectively. Retinol concentration used 
for each assay is shown in the parenthesis next to the cell line name.
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