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Abstract
Astrocytoma is a common aggressive intracranial tumor and a 
formidable challenge in clinic. Association of the altered DNA 
methylation pattern of the promoter CpG islands has been found in 
many human tumors. OCT4 and SOX2 are essential transcription 
factors for embryonic development and play key roles in determining 
the fate of stem cells. In this study, we aimed to investigate the 
methylation profiles of SOX2 and OCT4 genes in astrocytomas 
samples of Pará state. The methylation status of SOX2 and OCT4 
genes was examined by methylation-specific polymerase chain 
reaction (MS-PCR) in 31 samples. At least in the investigated CpG 
island of SOX2 and OCT4 genes, we found that both promoters are 
methylated. Understanding these epigenetic mechanisms can lead 
to better prognostic tools and new drug targets for tumors of the 
central nervous system.
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To date, a number of genetics and epigenetics alterations have 
been correlated with astrocytic tumorigenesis [5-7], however a 
deep understanding of the molecular basis of this tumour is still far 
away, and the search for novel prognostic or predictive molecular 

Introduction
Astrocytomas are malignant and prevalent intracranial tumours 

that comprise the majority of primary central nervous system tumors 
in adults, account for nearly 75% of neuroepithelial tumors [1]. They 
are classified according to the WHO malignancy scale, into low-
grade astrocytoma (WHO Grade I and II, AI and AII), anaplastic 
astrocytoma (WHO Grade III, AIII), and glioblastomamultiforme 
(WHO Grade IV, GBM).

Epigenetic markers, as DNA promoter methylation, can regulate 
thegene expression without altering the gene coding sequence [2]. 
One of the features of carcinogenesis is the specific hypermethylation 
of CpG islands within the promoter of some genes, which commonly 
results in the silencing of these genes leading to cell growth, 
proliferation and ultimately to the formation of invasive tumor and 
metastasis [3,4].

Table 1: Clinical characteristics of patient/tumor samples used for MSP-PCR

Patient Tumor type Sex Age OMS Grade
1 Subependymal giant cell astrocytoma M 23 I
2 Pilocytic Astrocytoma M 13 I
3 Pilocytic astrocytoma F 16 I
4 Pilocytic astrocytoma F 3 I
5 Pilocytic astrocytoma F 27 I
6 Fibrillary astrocytoma F 12 II
7 Fibrillary astrocytoma F 52 II
8 Fibrillary astrocytoma M 26 II
9 Fibrillary astrocytoma F 34 II
10 Fibrillary astrocytoma M 64 II
11 Anaplastic Astrocytoma F 55 III
12 Anaplastic Astrocytoma M 60 III
13 Anaplastic Astrocytoma F 31 III
14 GlioblastomaMultiforme F 68 IV
15 GlioblastomaMultiforme F 64 IV
16 GlioblastomaMultiforme M 65 IV
17 GlioblastomaMultiforme F 7 IV
18 GlioblastomaMultiforme M 43 IV
19 GlioblastomaMultiforme F 71 IV
20 GlioblastomaMultiforme F 51 IV
21 GlioblastomaMultiforme M 60 IV
22 GlioblastomaMultiforme M 43 IV
23 GlioblastomaMultiforme M 78 IV
24 GlioblastomaMultiforme M 38 IV
25 GlioblastomaMultiforme M 59 IV
26 GlioblastomaMultiforme M 42 IV
27 GlioblastomaMultiforme F 76 IV
28 GlioblastomaMultiforme F 84 IV
29 GlioblastomaMultiforme F 72 IV
30 GlioblastomaMultiforme F 29 IV
31 GlioblastomaMultiforme F 81 IV
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indicators are still the primary goal for the improvement of its clinical 
management [8].

OCT4/POU5F1 (octamer DNA binding transcription factor 
4) is an important member of the POU (Pit, Oct, Uncl) domain 
transcription factors encoded by POU5F1 gene (6p21.31), with, at 
least, three variants (A, B, and B1)produced by alternative splicing [9]. 
OCT4 performs an important role maintaining the cellular plasticity 
and promoting the self-renewal and the proliferation of pluripotent 
embryonic stem and germ cells in collaboration with other proteins, 
such as SOX2 (SRY-box 2), NANOG (Nanoghomeobox), and KLF4 
(Kruppel-like factor 4) [Burdon, Niwa]. To date, many reports 
found that OCT4 is highly expressed in several tumors [10,11] and 
its expression profile has been correlated with tumor grade and 
disease progression and is associated with a worse prognosis [12-15]. 
Therefore, the high expression of OCT4 is considered as a hallmark of 
cancer stem cells [16,17].

SOX2 is a transcription factor belonging to the sex determining 
region Y-box family [18], which is expressed in a wide variety of tissues 
and play important roles in the regulation of organ development, cell 
type specificity [19], and in the pluripotency maintenance of cancer 
stem cells (CSCs) in self-renewal and differentiation [20]. Increased 
expression of SOX2 has been reported in a growing list of tumors, 
including lung cancer, esophageal carcinoma, pancreatic carcinoma, 
breast cancer, ovarian carcinoma, hepatocellular carcinoma and 
head and neck cancers [21-26]. In particular, the SOX2 expression 
is important for the maintenance and development of the central 
nervous system tumors [27,28], and some studies present evidences 
that SOX2 expression is positively correlated with the malignancy 
grade in brain tumors [29-31]. Recently, Jesse et al. [27] suggested that 
an increasing expression of SOX2 during brain tumor progression are 
likely to be closely linked with changes in other critical genes that 
work in concert with SOX2 to enhance the tumorigenicity of brain 
tumors.

Although in recent years a considerable number of studies have 
been carried out on the OCT4 and SOX2 expressionand methylation 

in various tumors and proposed as useful markers of these tumors 
[32], little is known about their methylation pattern in astrocytomas. 
In this study, we aimed to identify the SOX2 and OCT4 gene promoter 
methylation signatures in astrocytomasin a population in the 
northern Brazil (Belém, Pará state) to verify the possible association 
between the methylation statusof these genes with clinicopathological 
features.

Material and Methods
This study involved 31 tissue samples from astrocitomas (Table 

1), obtained by surgical resections from patients who underwent 
craniotomy at Ofir Loyola Hospital, from 2005 to 2009, in Belém 
(Pará state). All samples were classified according to the WHO (World 
Health Organization) classification criteria [33]. All procedures 
were approved by the Ethics Committee of the involved hospital.
All tissue specimens after dissection were snap-frozen and stored 
with RNAlater™ Storage Solution (Sigma-Aldrich) at -80ºC until 
analysis. Genomic DNA was extracted from tissues using the phenol–
chloroform protocol as described by Sambrook and Russell [34].

Bisulfite treatment of DNA samples was performed as previously 
described by Herman et al. [35]. The methylation and unmethylation-
sensitive primers used in this study were previously described [36,37] 
(Table 2). 1µl of bisulfite-converted DNA was amplified in a 25µl 
reaction mixture containing 1.25mM dNTPs, 2.5μl of 1x reaction 
buffer, 2.5mM MgCl2, 0.5 mM forward and reverse of both genes 
primers, and 0.03U/μL of Taq DNA polymerase (Invitrogen). 
Universal methylated human male genomic DNA (Intergen, New 
York, NY, USA) was used as the positive control.

The MS-PCR profile for both genes was conducted as following 
steps: pre-denatured for 4 min at 94ºC, then at 94ºC for 30 seconds, 55ºC 
for 30 seconds, 72ºC for 30 seconds for 40 cycles, and finally a 10-min 
extension at 72ºC. Polymerase chain reaction products were separated 
on 3% Tris-borate EDTA agarose gels, stained with ethidium bromide 
and visualized under a UV transilluminator. Cases detected with the 
presence of methylated alleles were repeated once for confirmation.

Table 2: Sequences of primers used in SOX2 and OCT4 methylation-specific PCR 

Primer Primer sequence (5’ to 3’) Product size (bp) References
SOX2 promoter MSP-Methylated

Forward TGTTTATTTATTTTTTTCGAAAAGGCG 206 [36]
Reverse GAACCCAACCTCGCTACCGAA

SOX2 promoter MSP-Unmethylated
Forward TGTTTATTTATTTTTTTTGAAAAGGTG 208 [36]
Reverse CTCAAACCCAACCTCACTACCAA 

OCT4 promoter MSP-Methylated 
Forward CGGGATATTTGGTTTCGGATTTC 209 [37] 
Reverse CCCACAAAACTCATACGACGA 

OCT4 promoter MSP-Unmethylated
Forward TGGGATATTTGGTTTTGGATTTT 210 [37]
Reverse CCCCACAAAACTCATACAACAAA 

Table 3: Associations between demographic and clinical data of patients and methylation of SOX2 and OCT4 genes

SOX2 Gene OCT4 Gene
Methylated group Unmethylatedgroup P value Methylated 

group
Unmethylatedgroup P value

Gender
Male 10 3 0.4171 13 0 0.5806

Female 12 6 17 1

Age
< 60 14 5 0.4894 18 1 0.6129
≥ 60 8 4 12 0

OMS grades
Low-grades

(I and II)
8 3 0.6058 10 1 0.3548

High-grades (III 
and IV)

14 6 20 0
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For statistical analysis, we grouped the samples in data groups 
based on the histopathological classification of WHO, which were 
low-grades (I and II OMS grades) and high-grades (III and IV 
grades). Data were analyzed using Fisher’s exact test, with p ≤ 0.05 
being considered as statistically significant and performed with 
BioEstat 5.0 [38].

Results and Discussion
Of the 31 analyzed samples of astrocytomas patients, 13 were 

males and 18 females. The median age was 40.36 years (ranging from 
3 to 71 years). Table 1 presents a summary of sex, age, tumor stage 
and histological grade.

For the SOX2 gene, our results show this gene is methylated in 
70.96% of tumor tissues (22/31 cases) (Figure 1). There was no statistically 
significant difference in the frequencies of hypermethylated SOX2 gene 
promoter samples with clinicopathologic variables, age and sex (Table 3).

For the OCT4 gene, we detected that this gene was 
hypermethylated in 96.77% of tumor tissues (30 of 31 cases) (Figure 
1). Similarly to the SOX2 gene, there was no statistically significant 
difference in the frequencies of methylated OCT4 gene promoter with 
clinicopathologic variables (Table 3).

Astrocytic tumors are the most common type of intrinsic brain 
tumors. They show a tendency for progression toward a more 

malignant phenotype [39], and the average survival of patients 
with aggressive forms of gliomas is less than 2 years [40]. Therefore, 
anadequate diagnosis and treatment of these brain tumors presents 
the major challenge in neuro-oncology today.

Promoter CpG methylation has an important role in controlling 
gene transcription and therefore contributes to the regulation of 
many biological processes. In cancer, aberrant DNA methylation 
is associated with initiation and progression of malignant disease. 
Therefore, the DNA methylation patterns could be used to improve 
cancer diagnosis and/or prognosis [41]. However, in spite of 
clinical research progress, there are few epigenetic biomarkers for 
astrocytoma diagnosis [42].

OCT4 (also known as Oct-3 and POU5F1), is a transcription factor 
involved in regulation of cell growth and differentiation [43,44]. OCT4, 
as well as SOX2 and Nanog, plays a pivotal role in the regulation and 
maintenance of pluripotency. In recent studies, OCT4 expression has 
been detected in various carcinomas including breast, prostate, bladder, 
head and neck squamous cell carcinomas and lung adenocarcinoma, 
which correlates with an unfavorable prognosis [15,45-47]. Furthermore, 
considerable studies indicate the DNA methylation of the OCT4 at the 
gene regulatory region is a key factor in OCT4 transcription [48].

Here, our results suggest, at least in the investigated CpG sites 
of OCT4 gene promoter, a persistent hypermethylation event in all 
astrocytomas analyzed. It is well-established that methylation of CpG 

         

Figure 1: MSP analysis of the promoter CpG islands of SOX2 (A) and OCT4 (B) genes in astrocytomas. C+: positive control, U: unmethylated, M: Methylated. 
Numbers above the figure represent patients 1=patient 3; 2=patient 9; 3=patient 23 (See Table 1)
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dinucleotides is a common mechanism for the silencing of OCT4 
expression within its promoter, the proximal enhancer and distal 
enhancer regions [49-51]. Lee et al. [51] showed that OCT4 gene is 
progressively methylated during the in vivo maturation of neural 
stem cells in the neuroepithelium of the central nervous system, 
coincident with the downregulation of its expression. It has also been 
shown previously that OCT4 expression can be induced by treatment 
of adult neural stem cells with the DNA methyltransferase inhibitor, 
5-azacytidine and histone deacetylase inhibitor [52].

OCT4 promoter demethylation has already been reported 
to contribute to tumorigenes is [37,53]. In primary gliomas, the 
methylation levels of the OCT4 gene is notably reduced as compared 
to the normal group and is lower in high-grade gliomas than in 
low-grade ones [54]. Ontheotherhand, the difference between our 
results and those presented by Shi et al. [54] can be associated with 
different techniques employed, as well it is also possible that OCT4 
was upregulated by hypomethylation of other CpG islands in the 
promoter regions of OCT4 that were not tested in this study.

Another gene evaluated was SOX2, a self-renewal transcription 
factor crucial to pluripotency maintenance in embryonic stem 
cells (ESCs) [55,56] expressed during various phases of embryonic 
development, which affects cell fate and differentiation. Increased 
expression of the SOX2 has been reported in several tumors and both 
epigenetic and genetic factors, particularly gene amplification, have 
been identified as frequent causes of SOX2 overexpression [57,58]. 
Schoenhals et al. [59] compared the expression of OCT4, SOX2, 
KLF4 and C-MYC in 40 human tumor types and their normal tissue 
counterparts using publicly available gene expression data, and found 
a significant overexpression of at least one of the pluripotency factors 
in 18 out of the 40 cancer types investigated. According this study, 
SOX2 was significantly overexpressed only in grade IV compared 
to grade II and III of gliomas. This pattern was corroborated by 
Alonso et al. [58], which evaluated the expression and methylation 
status of SOX2 in glioblastomamultiforme (GBM) and found that 
SOX2 promoter was hypomethylated in all the patient samples when 
compared to normal cell lines, correlating this data with high SOX2 
protein levels and mRNA overexpression in 90% of the samples, 
suggesting that this gene could be used as a therapeutic target in GBM.

Nevertheless, our results suggest that SOX2 is hypermethylated 
in 86.36% of the samples, corroborating with other studies in several 
tumors. Wong et al. [60], who used the MSP-PCR technique to 
study the methylation profiles of SOX2 in endometrial carcinomas, 
observed that this gene was methylated in 37.5% (27/72) of the 
samples, and with a significant correlation between its mRNA 
expression, hypermethylation, and shorter survival of patients. SOX2 
hypermethylation and downregulation has been reported in gastric 
cancers in association with effect on cell growth and patients’ survival 
[61]. Moreover, the hypermethylation in the promoter region of SOX2 
was demonstrated in hydatidiform moles and choriocarcinomas 
when compared with normal placentas in association with reduced 
RNA expression [36].

In conclusion, while no statistically significant changes between 
promoter methylation of both genes with clinicopathological 
features were found using methylation-specific PCR, we found that 
both genes are hypermethylated in samples of astrocytomas of the 
patients of Belém, of Pará state - Brazil. It is clear, however, that more 
robust techniques such as pyrosequencing or promoter methylation 
array must be employed to be able to detect marginal but possibly 
meaningful differences in methylation.
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