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Abstract
Staphylococcus epidermidis is a commensal commonly found 
in polymicrobial biofilms with Staphylococcus aureus. Given 
the increasing drug resistance in Staphylococci, we explored 
combination therapy with teicoplanin and bacteriophage type 92 
(Siphoviridae) on the survival and antibiotic tolerance of methicillin-
resistant S. aureus (MRSA) and S. epidermidis to teicoplanin 
and bacteriophage in 48-h pure and mixed culture biofilms. The 
combination of teicoplanin and bacteriophage was more effective 
against MRSA, but not S. epidermidis monocultures, than the use 
of either teicoplanin or phage alone. In polymicrobial biofilms, 
however, MRSA acquired increased susceptibility to phage 
infection and S. epidermidis acquired increased tolerance to 
teicoplanin, as well as increased fitness. The results demonstrate 
bacteriophage alone was more effective against MRSA and S. 
epidermidis in polymicrobial biofilms compared to the combination 
of bacteriophage and teicoplanin.
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device infections, MRSA often grows as surface-adherent biofilm 
communities. Biofilm growth results in increased antimicrobial 
resistance, particularly in a polymicrobial community [7].

Beta-lactam resistant staphylococcal infections are often treated 
with glycopeptide antibiotics, such as vancomycin and teicoplanin [8]. 
While similar to vancomycin in bactericidal spectrum, teicoplanin is 
not currently FDA-approved for use in the United States [8]. Outside 
the US, several studies have investigated the efficacy and potential side 
effects of teicoplanin in comparison to other glycopeptide antibiotics 
including vancomycin [9]. Since staphylococcal species easily attain 
antibiotic resistance, and some bacteriophages are known to degrade 
biofilm matrices, attention has refocused on the therapeutic use of 
bacteriophages [10].

Bacteriophages have been used since the earliest 20th century to treat 
a number of infections [11,12]. In Europe and North America phage 
therapy has been largely supplanted by antibiotic therapy [11] although 
it has still been pursued in the former Soviet Union and other eastern 
countries [13]. With the increasing resistance of bacterial infections to 
antibiotics, phage therapy is being reexamined. In this context, examples 
of experimental strategies include the use of phage cocktails targeting 
multiple bacterial strains [14] and combination phage-antibiotic therapy 
[15]. A number of phage depolymerase enzymes have been described, 
which enable phage to penetrate biofilm matrix polymers [10,16]. While 
these work well in monoculture biofilms, polymicrobial biofilms have 
variable matrix chemistries and our previous study [17] has shown 
matrix polymers from a non-target host organism to be capable of 
interfering with some phage. Here, we investigate the effectiveness of 
teicoplanin and bacteriophage combination therapy in monoculture and 
polymicrobial biofilms of methicillin-resistant S. aureus and methicillin-
susceptible S. epidermidis. These two organisms are a frequent cause and 
commonly co-exist in transcutaneous medical device infections [6,18].

Materials and Methods
Bacterial strains, bacteriophage, media, and culture 
conditions

Methicillin-resistant Staphylococcus aureus (ATCC 37741), 

Introduction
Methicillin-resistant Staphylococcus aureus (MRSA) has emerged 

as one of the most dangerous and widely publicized pathogens in the 
United States since its initial identification [1,2]. Originally limited to 
nosocomial, or healthcare-associated infections (HA-MRSA), MRSA 
has since been identified as a serious public health threat to persons 
with no affiliation with hospital settings [3]. In the 2000s, MRSA 
emerged in community settings [4] including USA college campuses 
associated with clinical programs resulting in the distinction between 
HA-MRSA and community-acquired MRSA(CA-MRSA) [5]. The 
gene responsible for methicillin resistance in S. aureus, mecA, is not 
found on methicillin-susceptible strains of S. aureus [4]. A number 
of infections are associated with MRSA including those associated 
with medical devices, soft tissue abscess infections and occasionally 
more invasive conditions. MRSA infections are often polymicrobial 
and frequently include Staphylococcus epidermidis [6]. In medical 
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Staphylococcus epidermidis (ATCC 12228), and Bacteriophage type 
92 (ATCC 33741-B) [19] were obtained from the American Type 
Culture Collection (Manassas, VA). S. aureus and S. epidermidis 
were grown in Tryptic Soy broth (TSB) (Accumedia Inc., Lansing, 
Michigan) at 37°C in an orbital rotating shaker water bath. 
Bacteriophage type 92 was used to infect S. aureus and S. epidermidis. 
Bacteriophage 92 stocks were prepared by infecting early log phase 
S. aureus using the agar overlay technique as previously described 
[20]. Briefly, 350 μL of early log phase S. aureus was added to 3.5 
mL of 0.38% (w/v) agar in TSB. 100 μL of 106 (plaque-forming units 
(PFU)/ml) phage was added to yield confluent lysis. Following 24 
h at 37°C, phage was eluted from the agar overlay in 5 mL TSB at 
4°C. The phage-containing liquid was centrifuged at 4°C for 20 min 
at 4000g (Eppendorf Centrifuge model 5810R, Hamburg, Germany). 
Supernatant was filtered (0.45 µm) and phage titers (PFU/ml) were 
determined by a soft-agar overlay assay [20]. Teicoplanin (Sigma-
Aldrich Co. St Louis, MO) stocks were prepared in deionized water 
followed by filter sterilization. Teicoplanin at a concentration of 10 
μg/mL was used for all experiments. During dilution plating of mixed 
cultures, S. aureus and S. epidermidis could be easily distinguished 
by growth on mannitol salt agar. A minimum of three biological 
replicates was performed for each study.

Biofilm formation

Overnight cultures (18 h) of S. aureus or S. epidermidis were 
diluted 1:500 and 200 μL was dispensed into clear, sterile, non-tissue 
treated 96-well plates (Fisher Scientific Co., Horizon Ridge, CT). For 
polymicrobial biofilms, 50 μL of each overnight culture were diluted 
in 50 mL TSB and 200 μL of the diluted culture was dispensed into 
plates. Plates were incubated for 48 h at 37°C with rocking at 10°C, 
at 15 rpm (VWR Signature™ Incubating Rocking Platform Shaker, 
VWR, Houston, TX).

Biofilm bacteriophage and antibiotic susceptibility assays

Supernatant was removed from 48 h S. aureus biofilms and 
biofilms washed with 200 μL PBS. Biofilms were treated with either 
phage (multiplicity of infection (MOI) 10), teicoplanin (10 μg/mL), 
or a combination of both contained in 200 μL TSB at 37°C. After 12h 
treatment, biofilms were sonicated for 1 min at 40 kHz, and colony 
forming units (CFU) determined by dilution plating on TSA plates.

Determination of increase in tolerance to teicoplanin by S. 
epidermidis.

Susceptibility of S. epidermidis to teicoplanin was determined 

using the Kirby-Bauer disk diffusion technique, as described by the 
Clinical and Laboratory Standards Institute [21] with TSA substituted 
for Mueller-Hinton agar. S. epidermidis susceptibility to teicoplanin 
was tested before and after exposure to S. aureus in polymicrobial 
biofilms. S. epidermidis recovered from polymicrobial biofilms was 
sub-cultured nine successive times and each sub-culture was tested 
for susceptibility to teicoplanin.

Effect of S. epidermidis supernatant on S. aureus phage 
sensitivity

S. aureus sensitivity to phage was determined by growing S. 
aureus biofilms with 100 μL of S. epidermidis supernatant for 48 h at 
37°C. Culture supernatant was obtained after 18 h planktonic culture 
from either S. epidermidis monoculture, or a mixed S. epidermidis –
MRSA culture. Supernatants were prepared by centrifugation (3000 
g for 20 min) followed by filtration through a 0.45 µm pore-size 
filter. S. aureus biofilms were washed with 200 μL PBS and infected 
with phage at MOI 10. Biofilms were enumerated by sonication and 
dilution plating as described above.

Transmission electron microscopy (TEM)

For TEM examination, 5 μL of 1010 PFU/mL phage were placed on 
200 mesh count, Formvar-coated copper grids (Electron Microscopy 
Sciences, Hatfield, PA) overnight at room temperature. Samples were 
stained with 2% uranyl acetate for one minute and viewed using a 
JEM-1200 EXII at an accelerating voltage of 60 KV.

Results
Phage type 92 characterization

Phage type 92 was originally isolated in 1979 from MRSA isolates 
[19]. TEM examination of phage 92 (Figure 1), revealed icosahedral 
capsids approximately 62 nm in diameter and long, flexible tails 
approximately 175 nm in length. On the basis of viral morphology 
and established taxonomy guidelines [22], phage 92 belongs to the 
family Siphoviridae.

Effect of bacteriophage and teicoplanin, on monoculture 
and mixed culture biofilms

Growth of S. aureus and S. epidermidis following treatment with 
phage 92, teicoplanin and combination treatment is shown in Figure 
2. We also calculated changes in fitness (expressed as a ratio of (log 
CFU treated culture/log CFU monoculture control)) which is shown 
in Figure 3. When compared to untreated controls, the most effective 

         

Figure 1: TEM micrograph of Phage 92. Based on the flexible tail and icosahedral head [22], this phage should be classified in the family Siphoviridae.
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treatment of monoculture MRSA biofilm cultures was combination 
phage and teicoplanin. Since phage require growing host cells in 
order to replicate, the enhanced success of the combination treatment 
suggests that teicoplanin did not completely block S. aureus growth 
when added in combination with phage 92. Different results were 
seen during treatment of mixed culture S. aureus. Here, the most 
effective treatment was phage alone. One likely explanation for this 

phenomenon is that phage attack on the host S. aureus facilitated 
competition from S. epidermidis, which was minimally affected by 
the phage during monoculture growth. Of interest, growth in mixed 
culture resulted in less impact of teicoplanin against MRSA alone or 
in combination with phage 92.

In monoculture S. epidermidis cultures, the most effective 
treatment was teicoplanin. This is not surprising as teicoplanin has 
been reported to be effective against this organism [9]. In contrast, 
mixed culture results were quite different. In untreated mixed-culture 
biofilms, MRSA outcompeted S. epidermidis which is reflected both 
in culture numbers (Figure 2 control) and fitness calculations (Figure 
3 control). Although MRSA is the host organism for phage 92, there 
was a slight decrease in S. epidermidis numbers and fitness (P < 0.001) 
relative to the mixed culture control, suggesting that some phage 
influence or competition from MRSA was occurring in the presence 
of phage. In contrast to the reduced fitness seen in S. epidermidis 
monocultures with teicoplanin alone or in combination with phage 
92; the fitness of S. epidermidis was significantly increased in mixed 
culture (P < 0.001 in comparison to monoculture results) when 
grown in mixed culture. We also observed that repeated subculture 
of S. epidermidis with MRSA decreased teicoplanin susceptibility and 
the onset of resistance (Figure 4).

Discussion
The decreased antibiotic susceptibility of monoculture biofilms 

has been known for over 30 years [23] and a number of mechanisms 
for biofilm-mediated resistance have been described including 
altered growth rates within biofilms, biofilm-specific resistance genes 
and the presence of dormant persister subpopulations (reviewed in 
[24,25]). Biofilms including MRSA wound infections [6] typically 
contain polymicrobial communities and there is increasing interest 
in studying antimicrobial susceptibility in that context. Two studies 
showed that increased bacterial community diversity resulted in 
higher biofilm cell density [26,27]. In one of these studies, increased 
biofilm resistance to disinfection was due to general interactions 
among all community members [26]. In the second study, biofilm 
resistance was entirely due to the presence of a single resistant 
community member [27]. Combination phage-antibiotic treatments 
have shown promise in the treatment of monoculture biofilms e.g. 
[28,29], however their effectiveness against mixed cultures is less 
clear. With planktonic cultures, Harcombe and Bull [30] showed that 
phage could enhance microbial competition in a two-species system 
by targeting one component organism. However, biofilm growth 
does enable many bacteria to persist in spite of competition [31].

Our data would suggest that microbial competition does play a 
role in the efficacy of some antimicrobial treatments against some 
biofilms, most notably the phage 92 treatment of MRSA in mixed 
cultures (Figure 3). Competition was not evident during treatment 
of mixed culture biofilms with teicoplanin alone or in combination 
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Figure 2: Growth of MRSA (S. aureus) and S. epidermidis biofilms following 
exposure to phage 92, teicoplanin, or combination phage 92 and teicoplanin. 
Details are in the text.
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Figure 3: Fitness of S. aureus and S. epidermidis expressed as the ratio of log 
CFU treated culture/log CFU untreated (control) monoculture.
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Figure 4: Subculture of S. epidermidis with MRSA resulted in a slight increase 
of tolerance as reflected in a decrease of the zone of inhibition (bar graph). 
As well the number of resistant colonies (line graph) increased. The notable 
changes occurred after the organisms were initially grown together (subculture 
1), with minimal changes seen during subsequent subcultures.
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with phage 92. The increased fitness of both MRSA and S. epidermidis 
during teicoplanin treatment in comparison to the monoculture 
results (P < 0.001) suggests that the two normally competitive 
organisms, exhibit synergy (facilitation) in the presence of 
teicoplanin. In previous work with environmental isolates, we found 
that the presence of one disinfectant (betadine) resistant organism 
could confer resistance to an entire mixed biofilm population [27] 
likely through facilitation, so this finding is not unprecedented.

In planktonic monoculture or mixed Pseudomonas aeruginosa 
and Escherichia coli cultures, we observed that the administration of 
sub-lethal concentrations of antibiotics or phage is followed rapidly 
by the onset of resistance through the planktonic populations likely 
through mutation and natural selection. In contrast, while biofilm 
populations of these organisms were protected by this mode of 
growth, a significant proportion of organisms within biofilms retained 
susceptibility to phage or antibiotics when released from biofilms by 
sonication, diluted and cultured on antibiotic- or phage-containing 
agar [15,17]. We tested the influence of previous co-culture growth on 
the teicoplanin susceptibility of S. epidermidis using a disk diffusion 
assay. We also measured the number of spontaneous teicoplanin-
resistant colonies which grew within the zone of inhibition. During 
these studies, S. epidermidis was sub-cultured overnight up to ten 
times with MRSA and then purified and tested. As seen in Figure 4, 
there was a slight but significant (P < 0.01) decrease of susceptibility 
following the first sub-culture. In subsequent subcultures, while 
there was some variability in the zone of inhibition, it was still 
significantly less than the original culture (designated as subculture 
0) before mixed culture growth. Similarly, there was an increase in 
the number of resistant colonies seen after the first sub-culture with 
the numbers increasing from 4 to > 90 in most cases. Although S. 
aureus (ATCC 37741) is resistant to methicillin, it is sensitive to 
teicoplanin, which would rule out horizontal gene transfer of a pre-
existing resistance gene to S. epidermidis. Although we do not have 
a direct explanation for this phenomenon, it is possible that mixed 
culture growth of S. epidermidis with S. aureus activated mechanisms 
that enabled S. epidermidis to better tolerate exposure to teicoplanin. 
Further work will be needed to elucidate the mechanism(s) behind 
this phenomenon.

Conclusions
Many S. aureus infections involve polymicrobial interactions 

with S. epidermidis and biofilm growth [6]. In the current study, 
interactions between S. aureus and S. epidermidis strains used affected 
the efficacy of teicoplanin antibiotic and phage treatment. In some 
cases, when one organism was targeted (MRSA specific phage 92 in 
mixed culture), mixed culture interactions enhanced the treatment 
due to microbial competition, whereas in other cases in which both 
organisms were targeted by teicoplanin, the efficacy was reduced 
possibly due to facilitation interactions. Overall these data emphasize 
the importance of studying mechanisms of antimicrobial treatments 
in a polymicrobial biofilm growth system.
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