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Abstract
COVID-19 patients have a higher risk of developing inflam-
matory responses associated with serious and even fatal re-
spiratory diseases. This review focuses on the relationship 
between oxidative stress and COVID-19. Coronaviruses are 
a family of common RNA viruses that can cause serious 
lower respiratory tract infections, followed by bronchitis and 
pneumonia. Pulmonary inflammation, fever and fibrosis are 
symptoms of COVID-19 mediated by cytokine pro-inflam-
matory. Oxidative stress affect repair mechanisms and the 
immune control system, which is one of the main events of 
the inflammatory response which allows us also to conclude 
that oxidative stress is a major factor increasing the severity 
of COVID-19 especially during chronic diseases associat-
ed with the fragility of the antioxidant system, suggesting 
to recommend antioxidants supplementation in therapeutic 
strategies against COVID-19.
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family of Coronaviridae, genus betacoronavirus [2]. In 
humans, SARS-CoV-2 (COVID-19) has identified as the 
seventh now pathogenic Cornonavirus for humans af-
ter other coronavirus species which are: seasonal HCoV, 
SARS-CoV, MERS-CoV [3]. Whereas coronavirus 2 (SARS-
CoV-2) causes a severe acute respiratory syndrome that 
spreads worldwide [4]. According to the guidelines of 
the World Health Organization (WHO), the communica-
bility, severity and impact of the disease are the crite-
ria for assessing the severity of pandemic influenza [5]. 
Communicability reflects the movement of the virus, 
which is influenced by the dynamics of spread [6]. The 
lungs are the preferred target of COVID-19 by the large 
area exposed to viruses, they are among the most ox-
ygenated organs in the human body [7]. Multiple lung 
disease including apnea causes alveolar hypoventila-
tion, vasoconstriction of the pulmonary artery and cyclic 
changes in hypoxemia contribute to increased produc-
tion of reactive oxygen species (ROS) characteristic of 
the condition oxidative stress [8]. Oxidative stress is an 
important factor causing metabolic and physiological al-
terations and various diseases in the body [9]. COVID-19 
attack triggers inflammatory reaction which releases 
pro-inflammatory cytokines characteristic of acute lung 
damage [10]. A great association between the pro-in-
flammatory elements and the reactive oxygen species 
(ROS) in the different lung disease including Coronavi-
rus infection which is associated with inflammation and 

Background
SARS-CoV-2, the virus responsible for COVID-2019 

for (Coronavirus disease 2019) is a new coronavirus dis-
covered in the city of Wuhan in Hubei province in China 
in December 2019 ref. COVID-19 has been described 
as a pandemic by the WHO from the date March 11, 
2020, the first triggered by a coronavirus [1]. Corona-
viruses are enveloped RNA viruses belonging to the 
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oxidative stress [11]. The current review focuses on the 
relationship between COVID19 infection and inflamma-
tion on one side and between oxidative stress and in-
flammation on the other to identify the possible effect 
of oxidative stress on the progression of the state of 
health of the COVID-19 host.

Oxidative Stress and Lung Disease
In lung tissue and during pulmonary ischemia, alveo-

lar oxygen helps maintain aerobic metabolism, delaying 
hypoxia [12] which results in decreased levels of ade-
nosine triphosphate (ATP) and more intense breakdown 
of ATP, resulting in increased production of hypoxan-
thine [13]. When oxygen is reintroduced into the envi-
ronment by ventilation, the superoxide radical is formed 
under the action of the enzyme xanthine oxidase on hy-
poxanthine [14]. In the absence of blood circulation in 
the lungs there is lipid peroxidation and oxidative dam-
age due to the presence of oxygen [15]. Furthermore, 
NADP oxidase and NO oxidase in the endothelium seem 
to be one of the main causes of oxidation in pulmonary 
ischemia. Also immune cells such as macrophages and 
neutrophils can contribute to oxidative damage in the 
lungs by the same enzymatic mechanism (NADP Oxi-
dase) [16].

Oxidative stress and chronic obstructive pulmo-
nary disease

Oxidative stress plays a central role in the pathogen-
esis of chronic obstructive pulmonary disease (COPD). 
Exposure to the environment is the main source of 
oxidative stress, such as cigarette smoke (CS) and air 
pollutants, which may be example for the role of cig-
arette smoke [17]. The study of Sundar, et al. showed 
that chronic smokers release more free radicals from 
leukocytes, have high levels of lipid peroxidation prod-
ucts with a decrease in antioxidants (vitamin E) in the 
distal respiratory tract compared to non-smoking con-
trols [18]. This can cause inflammation and higher re-
lease of protease. Also it has been shown that in smok-
ers there is a lack of vitamin A depletion which protects 
lipids against peroxidation caused by free radicals un-
der the effect of benzopyrene, a component of cigarette 
smoke [19]. In addition, leukocytes and macrophages 
are involved in the inflammatory process in the lungs 
of subjects with chronic obstructive pulmonary disease, 
which increases the ROS [20]. The latter are capable of 
causing oxidative damage to DNA, lipids, carbohydrates 
and proteins, which contribute to the development and 
progression of COPD [21]. Reactive oxygen species also 
activate epithelial cells and alveolar macrophages, to 
generate chemotactic molecules that recruit neutro-
phils, monocytes and lymphocytes into the lung [22], 
which develops persistent inflammation and chronic 
oxidative stress in the lungs, and also develops defects 
in tissue repair mechanisms, accelerated apoptosis and 
increased autophagy in lung cells, all of which have 

been linked to the severity and progression of chronic 
obstructive pulmonary disease [23].

Oxidative stress and obstructive sleep apnea and 
asthma

During obstructive sleep apnea, circulating neutro-
phils increases free radical release, lipid peroxidation 
and reduce nitric oxide, which is an endothelial vaso-
dilator [24]. In addition, reactive oxygen species cause 
an increase in platelet aggregation and can increase the 
expression of various endothelial genes, such as those 
responsible for the synthesis of adhesion molecules, 
endothelin and vascular endothelial growth factor [25]. 
On the other hand, Asthma is a disease characterized 
by chronic inflammation of the airways. Several patho-
physiological changes in asthma are associated with the 
production of free radicals by inflammatory cells [26]. In 
asthma, an increased oxidative charge can lead to the 
release of nitric oxide which interact with the superox-
ide anions to form peroxynitrite (ONOO-), which has 
considerable oxidative capacity [27].

Oxidative stress and acute respiratory distress syn-
drome

Acute lung injury (ALI) and its most serious form, 
acute respiratory distress syndrome (ARDS) are com-
mon complications in critically ill patients and are re-
sponsible for significant morbidity and mortality [28]. 
Following a bacterial or virus infection, the pulmonary 
macrophages and the endothelium are activated and 
regulate the surface expression of the adhesion mol-
ecules [29]. This leads to the activation of neutrophils 
and to the subsequent transmigration of the intravascu-
lar space into the socket [30]. This produces a plethora 
of inflammatory mediators that include reactive oxygen 
species (ROS) such as hydroxyl radical and nitric oxide 
(NO), cytokines and chemokines which are the source of 
oxidative stress associated with acute lung injury [31].

COVID-19 Induced Inflammatory Reaction

Covid19 and host targets in lung cells
The large volume and area of   the lung is an import-

ant factor in susceptibility to inhaled viruses, but there 
are also other biological factors [32]. More recently, the 
first and complete sequence of the COVID-19 genome 
has been deposited in NCBI (GenBank: MN908947.3) 
[33] which makes it possible to identify the key to the 
potential structure, the viral protein binding model and 
the model of interaction with target proteins of host 
cells (such as ACE2, cyclophilins and other cell adhesion 
factors) which important for cell adhesion and virulence 
[34]. The identification of COVID-19 structure makes it 
possible to know the nature of interaction protein with 
respect to the structure of SARS virus which shows an 
identity of 91% in the region of domain S2, but it lacks 
similarity in three other regions [35]. A greater sequence 
difference (55% identity) was found in the S1 domain 
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age induced by Protein N of SARS-CoV which proves the 
induction of pulmonary inflammation during COVID19 
attack [49]. On the other hand, Extracellular cyclophil-
ins (eCyPs), one of the interactive targets of SARS-Cov 
in lung cells, are also pro-inflammatory factors playing 
an important role in the pathogenesis of a number of 
inflammatory diseases [50] through interaction with the 
CD147 receptor and the initiation of a poorly character-
ized signal transduction process leading to chemotaxis 
and the production of pro-inflammatory factors [51].

Oxidative Stress and Inflammation of Lung Cell

Inflammatory response markers in the lungs
The cooperation between the functions of cyto-

kines, chemokines and adhesion molecules controls 
the inflammatory response in the lungs [52]. Pulmo-
nary edema, infiltration of inflammatory cells and 
thickening of the alveolar interval have been shown to 
promote pulmonary edema and the spread of hypoxia 
gradually worsens inflammation of the lung tissue [53]. 
The induction of cytokines such as TNF-α and IL-6 is 
involved in transcriptional reprogramming induced by 
CIH [54].

Oxidative stress and inflammatory response
Inflammation of the airways and oxidative stress have 

been implicated in the pathogenesis of COPD [55]. A 
high number of neutrophils, macrophages and lympho-
cytes (TCD8+) have been shown in the bronchoalveolar 
lavage fluid during inflammation, and an elevated level 
of TNF-α and IL-8 has been detected in the plasma of 
patients with of COPD, in the case of IL-8 which is a pow-
erful chemoattractant of neutrophils, it initiates degran-
ulation and the production of reactive oxygen species 
(ROS) which induce oxidative stress. This last plays a pri-
mary role in the pathogenesis of COPD [56]. Oxidative 
stress is a condition caused by an imbalance between 
oxidants and antioxidants. Oxidative stress may affect 
extra-cellular matrix remodeling, mitochondrial respi-
ration, cell proliferation and lung defense mechanisms 
[57]. Neutrophils and macrophages are inflammatory 
cells responsible for producing the majority of oxidants 
in the lungs of COPD patients by releasing cytokines and 
regulating cell adhesion molecules [58]. Moreover, oxi-
dative stress affect repair mechanisms and the immune 
control system, which is one of the main events of the 
inflammatory response [59].

Strategies to Improve Oxidative Stress in 
COVID-19 and Lung Disease

Categories of antioxidants approaches
Several clinical approaches have been tested in or-

der to repair the state of oxidative stress. These stra-
tegic approaches can generally be classified according 
to the therapeutic target as agents blocking the pro-
duction of NO• in the case of excess NO• [60]; increase 

which is known for its target host cell interaction under-
lying cell adhesion and virulence [36]. This suggests that 
COVID-19 may interact with some of the host targets 
previously described (ACE2, cyclophilins), but via slightly 
varied molecular interactions [37]. In the lower respira-
tory tract, angiotensin 2 converting enzyme (ACE2) has 
been shown to be the major receptor for glycoprotein S 
of SARS-CoV suggest that COVID-19 may also infect cells 
of the lower respiratory tract via the same ACE2 enzyme 
[38]. It has been shown that 83% of ACE2 is expressed in 
epithelial cells alveolar type II suggesting that these cells 
can serve as a reservoir for the virus and that these cells 
expressing ACE2 facilitates invasion coronavirale entry 
and replication, as well as serious lung damage [39]. On 
the other hand, Extracellular cyclophilins (eCyPs), one 
of the interactive targets of COVID-19 in lung cells, are 
also pro-inflammatory factors playing an important role 
in the pathogenesis of a number of inflammatory dis-
eases through interaction with the CD147 receptor and 
the initiation of a poorly characterized signal transduc-
tion process leading to chemotaxis and the production 
of pro-inflammatory factors [40].

Covid19 and pro-inflammatory production
The data so far available seem to indicate that the 

COVID-19 infection is capable of producing an excessive 
immune reaction in the host [41]. In the study by Dan 
Zhang, et al. 2020, performed on patients with COVID-19 
they illustrated larger than normal monocytes, easily 
identifiable by forward scattering, with the presence 
of a distinct population monocytes with strong forward 
diffusion (FSC-high) [42]. On a more detailed analysis, 
these elevated FSC monocytes are CD11b+, CD14+, 
CD16+, CD68+, CD80+, CD163+, CD206+ and secrete 
IL-6, IL-10 and TNF-alpha, consistent with an inflamma-
tory phenotype [43]. Infection with COVID-19 leads to 
excessive activation of monocytes/macrophages with 
the development of a cytokine storm and consequently, 
leading to the appearance of acute respiratory distress 
syndrome (ARDS) [44]. Pulmonary inflammation, fever 
and fibrosis are symptoms of COVID-19 mediated by 
the production of active IL1 under the action of toll like 
receptors (TLR) when it interacts with cytokine pro-in-
flammatories, including IL-1b and IL-6 via COVID-19 
induced [45]. In addition, an increase in the interferon 
gamma of type 1 helper T lymphocytes (Th1) (IFN-γ), 
inflammatory cytokines IL-1β, IL-6 and IL-12 have been 
reported in patients with SARS-Cov in for at least two 
weeks after the onset of the disease [46]. IL-6 is pro-
duced by activated leukocytes, acts on a large number 
of cells and tissues, promotes the differentiation of B 
lymphocytes, the growth of certain categories of cells 
and inhibits the growth of others [47]. IL-6 increases 
during inflammatory diseases, infections, autoimmune 
disorders, cardiovascular diseases and some types of 
cancer [48]. An increase in pro-inflammatory cytokines 
linked by inflammatory reactions and acute lung dam-
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hibits macrophages from producing inflammatory cyto-
kines in infected lungs. Polyphenols can induce phase II 
detoxifying genes by mechanisms dependent on Nrf-2 
[74]. The catechins present in green tea (epigal-locat-
echin-3-gallate) in addition to theophylline have anti-
oxidant and anti-inflammatory character [75] and also 
possibly effective in the increase of glucocorticoids in 
lungs diseases [76].

Prevention strategy
Preventive measures are the current effective 

strategy to limit the spread of COVID-19. The most 
important strategy for people is to wash their hands 
frequently and use a portable hand sanitizer and 
avoid contact with the face and mouth after inter-
acting with a potentially contaminated environment. 
For the health sector, preventive strategies focus on 
isolating patients and carefully controlling infections, 
including appropriate measures to be taken during 
diagnosis and the provision of clinical care to an 
COVID-19 infected patient.

Conclusion
The rapidly progressing COVID-19 pandemic has led 

to difficult decision-making regarding the treatment of 
critically ill patients with the new viral infection. This 
systematic review seeks to provide guidance based on 
the relationship between the inflammatory responses 
induced by COVID-19 and the release of ROS, which 
generates a state of oxidative stress, which suggests 
recommending antioxidants in therapeutic strategies 
against COVID-19.
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