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Single and Multiobjective Optimal Control of the COVID 
Pandemic Model Involving Hospitalizations and Non-
Pharmaceutical Control Actions
Lakshmi Sridhar*

Abstract
Objectives: In this paper, single and multiobjective 
optimal control is performed on a Corona Virus disease 
model involving hospitalizations and non-pharmaceutical 
intervention tasks to minimize the damage done by the 
virus. This model considers the effects of hospitalization 
and non-pharmaceutical interventions like quarantining and 
social distancing.

Methods: This method does not use weighted functions 
but minimizes the distance from the utopia point. The 
utopia point is obtained by the single objective optimal 
control procedure and the multiobjective optimal control is 
performed by minimizing the distance from the Utopia point. 
The optimization program, Pyomo where the differential 
equations are automatically converted to a Nonlinear 
Program is used in conjunction with the state-of-the-art 
global optimization solver BARON.

Results: Four single objective optimal control and one 
multiobjective optimal control problem were solved. The 
single optimal control involves minimizing the infections, 
death rate, and the cost of performing the control tasks 
and maximizing the recovered subjects. The multiobjective 
optimization involves minimizing the infections, death rate, 
and the cost of performing the control tasks and maximizing 
the recovered subjects at the same time. It is observed that 
the multiobjective optimal control is as effective as the single 
objective optimization in addition to having the advantage of 
controlling many variables.

Conclusions: The multiobjective optimization involving the 
minimization of the distance from the Utopia point is very 
effective to obtain the best control profiles and enables one 
to maximize the number of recovered subjects while keeping 
the cost of performing the control tasks as low as possible. 
In fact, it is as effective as the single objective optimal 
control that involves maximizing the recovered subjects 
without dealing with the cost of performing the control tasks.
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Introduction
The number of fatalities caused by the Corona Virus 

disease (COVID) virus is not only extremely high but 
also increasing at an alarming rate. The many strategies 
that are being used throughout the world, to control 
the pandemic, are being overwhelmed mercilessly by 
the global pandemic. The exponential increase in the 
number of confirmed infectious cases and deaths has 
caused countries all around the world to respond with 
severe lock-down, quarantining, and social distancing 
measures to contain the spread of the disease. It is 
causing so much suffering that one must do whatever 
possible to minimize the damage until a cure or/and 
a reliable vaccine is developed. The rapid spreading of 
this virus and the amount of fatalities has led to a lot of 
research in the year 2020 alone developing strategies 
to minimize the damage [1-23]; An interesting article 

[17] deals with optimal control of the covid pandemic 
model with hospitalization and non-pharmaceutical 
interventions. However, in this work a single function 
was minimized subject to the differential equations 
that govern the COVID model. This paper deals with 
the use of rigorous multiobjective optimal control 
(MOOC) for the same Covid pandemic model involving 
hospitalization and non-pharmaceutical interventions 
[17]. It is demonstrated that multiobjective optimal 
control procedure will yield very similar results (in 
addition to controlling the other variables) for the 
important variable that represents the number of 
recovered subjects as when a single objective optimal 
control is performed maximizing this variable.
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Model Equations
In the model [17], the outside infections affect the susceptible population S at a rate ι . This results in the 

formation of an exposed group E. This group has a life span of 1ρ −
 days. The symptomatic infected subjects, I, 

would be a portion σ  of the exposed group. The remaining subjects, A, are classified as asymptomatically infected 
and constitute a fraction α  of the symptomatically affected.

The set A has a life span of 1γ −  days. All asymptotically infected subjects and a fraction 1 κ−  of the infected 
subjects recover and become immune. A fraction κ  of the symptomatically infected subjects become a hospitalized 
group and they either recover or perish. The equations that govern this model are

( (1 )( ) )dS u A I H S
dt

µ δ β α ι ν= − + − + + + + 	 	 \* MERGEFORMAT (1)

( (1 )( ))( (1 ) ) ( )dE u A I H S V S E
dt

β α ε ι δ ρ= − + + + − + − + 	 \* MERGEFORMAT (2)

(1 ) ( )dA E A
dt

σ ρ δ γ= − − + 		 \* MERGEFORMAT (3)

( )dI E I
dt

σρ δ γ= − + 		  \* MERGEFORMAT (4)

( )dH I H
dt

γκ δ η= − + 		  \* MERGEFORMAT (5)

( (1 )( )(1 )dV S u A I H V
dt

ν δ β α ε= − + − + + − 		  \* MERGEFORMAT (6)

The number of deaths is a function of the hospitalized subjects and is given by

( )max
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( ( ) )
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( ) ( ) ( )

( )( ( ) 1 ) ( )h H t H

D t H t H t H
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η

η

−

−
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This formulation accounts for the situation where the existing hospital resources (like hospital beds) are not 
adequate to ensure that all the hospitalized patients are taken care of. The Variable names are given in Table 1 and 
the parameter values are given in Table 2. All the data values are taken from Perkins and Espana [17]. 

Optimal Control
In the multiobjective nonlinear optimal control (MOOC) strategy [24,25] used in this work the single objective 

optimal control problem is first solved for each of the objective functions. This procedure does not involve the use 
of weighting functions not does it impose additional parameters or additional constraints on the problem unlike the 
weighted function or the epsilon correction method [26].

For a multiobjective optimal control problem 

1 2 3 4 5min ( , ) ( , , , , .... )

( , )

( , ) 0

n

L U

L U

x u
dxsubject to x u
dt

h x u
x x x
u u u

φ φ φ φ φ φΦ =

= Κ

≤

≤ ≤

≤ ≤

		  ef \* MERGEFORMAT (8)

the single objective optimization problems are solved independently minimizing each iφ  (i = 1,2,3…n) individually. 
This will lead to minimized values

*
iφ  (i = 1,2,3,..n). Then the problem that will be solved is 
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The optimization program, Pyomo [27] where the differential equations are automatically converted to a 
Nonlinear Program (NLP) using the orthogonal collocation method [28] is used for performing the dynamic 
optimization calculations. The Lagrange-Radau quadrature with three collocation points and 10 finite elements 

Table 1: The Variable names.

Symbol Definition
S Susceptible people

E Exposed but not infected

A Asymptomatic Infections

I Symptomatic Infections

D Number of deaths

H Hospitalized infections

V Vaccinated non-infected people

u Non-pharmaceutical control actions

Table 2: Parameter values.

Symbol Definition value

α Relative infectiousness of asymptomatic infections 0.602

β Transmission coefficient 0.60

γ Rate of progression through infectious stage 0.31

δ Baseline per capita death rate 3.18 × 10-5

−∆ Minimum probability of death following hospitalization 0.104

+∆ Maximum probability of death following hospitalization 0.28

ε Per exposure protection from vaccination 0.8

η Rate of progression through hospitalization 0.075

ι Importation rate of infected people 3.24 × 10-7

µ Probability of hospitalization among symptomatic infections 3.18 × 10-5

κ Birth rate 0.26

ν Rate at which vaccines are administered 0.00197

ρ Rate of progression to infectiousness following infection 0.2

σ Proportion of infections that result in symptoms 0.82

maxH Maximum hospital capacity 2.74 × 10-3
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Figures 1: (a-f) Optimal control minimizing the total number of infected persons, I.

are chosen. The resulting nonlinear optimization problem was solved using the solver BARON 19.3 [29] accessed 
through the Pyomo-GAMS27.2 [30] interface. BARON implements a Branch-and-reduce strategy and provides a 
guaranteed global optimal solution.

Results
Four single objective optimal control and one multiobjective optimal control problems are solved. Figure 1 (a-f), 

Figure 2 (a-f), Figure 3 (a-f), Figure 4 (a-f) and Figure 5 (a-f) represent the profiles of S, I, H, D, (H-D), U for each of 
these optimal control problems. The time considered is 1 year (365 days). In the first problem the total number of 
infected persons, I, is minimized. The best individual solution obtained by Baron is zero and that is considered to 
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Figure 2: (a-f) Optimal control minimizing the total number of deaths D.

be the Utopia point. In the second optimal control problem the number of deaths, D, is minimized and the utopia 
point obtained is 4.274 × 10-5. In the third problem, (H-D) the number of recovered patients is maximized and the 
resulting utopia point is 0.1132. In the fourth single objective optimal control tasks are minimized to keep the 
price as low as possible and the utopia point is 0 again. In the multiobjective problem the objective function that is 
minimized will be 

2 2 5 2 2( ) ( ) ( 4.27 10 ) ( ( ) 0.1132)I u D X H D−+ + − + − −∑ ∑ ∑ ∑ 	 \* MERGEFORMAT (10)
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Figures 3: (a-f) Maximizing the number of people recovered after hospitalization H-D.

Discussion
This kind of multiobjective optimal control is very effective as it considers all the factors in a single optimal 

control task and enables the most effective strategies to be used. A comparison of Figure 3e and Figure 5e involving 
the most important variable (H-D), demonstrates that the multiobjective optimal control almost captures the same 
profile as the single optimal control solely maximizing the same variable while controlling the other variables as well. 
This demonstrates that this procedure is not only rigorous but also more useful than single objective optimizations 
as it allows for the control of more than one variable while being as effective.

Conclusions and Future Work
A rigorous multiobjective optimization procedure is used for the Covid model that involves hospitalizations and 

non-pharmaceutical interventions. It is demonstrated that this strategy is effective as it produces almost the same 
profile for the number of recovered subjects as when a single objective optimal control is performed maximizing the 
same variable, while controlling the other variables at the same time. The future work will involve the performance 
of such a multiobjective optimal control for other covid models.
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Figure 4: (a-f) Minimizing the control actions to keep the expenses as low as p.
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Figure 5: (a-f) Multiobjective optimal control profiles.
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