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Abstract
The flavonoids extracted from dried roots of Scutellaria 
species have been used in traditional Eastern medicine for 
the treatment of several human ailments, including cancer 
and inflammation. Modern science proved that wogonin is 
one of the major bioactive agents responsible for the phys-
iological activity of Baikal skullcap (Scutellaria baicalensis 
Georgi.), which has been regarded as a potent anticancer 
agent. In this mini review, anti-inflammatory, antioxidant and 
anticancer activity of wogonin are discussed. Besides, the 
bioavailability of wogonin and utilization of nanotechnology 
to improve the bioavailability of wogonin are also presented.
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Introduction
Cancer or malignant neoplasm is a group of dead-

ly diseases that results from genetic or epigenetic al-
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droxy-8-methoxyflavone) is an active component origi-
nated from the roots of S. baicalensis. Wogonin (Figure 
1A) as a glycoconjugate, wogonoside, (Figure 1B) was 
found in 4 species of the Scutellaria genus [6].

The plants which are belong to the Scutellaria genus 
constitutes one of the common components of Eastern 
as well as traditional American medicine which wide-
ly have been used for clinical treatment of hyperlipid-
emia, atherosclerosis, hypertension, dysentery, common 
cold, viral, bacterial, inflammatory disease and cancer 
[7]. Plants of the genus Scutellaria (Lamiaceae family) 
is widely distributed throughout the world and is repre-
sented by close to 350-400 species [8]. The Chinese herb 
S. baicalensis is one of the most common plants in the 
genus Scutellaria which is widely used as a traditional 
treatment of cancer due to the wogonin contain (Figure 
2). Wogonin displays a great variety of pharmacological 
activities including antioxidant [9], anti-inflammatory 
[10], anxiolytic [11], anti-hepatitis [12], anticonvulsant 
[13], anti-angiogenesis [14], neuroprotective [15,16] 
and anticancer [17-19]. Due to their remarkable spec-
trum of biological activities, flavonoids drew greater at-
tention among the various natural products [5].

Despite the wogonin displays a great variety of phar-
macological activities the use of wogonin is limited by 

terations in the somatic cells. The abnormal cells with 
rapid creation grow beyond their usual boundaries, can 
spread to the other organs and tissues [1]. Nowadays, 
several treatments are using against cancer including 
the surgery, chemotherapy, radiation therapy, target-
ed therapy and immunotherapy. However, these treat-
ment methods might cause side effects and problems 
by affecting the healthy tissues or organs in patients. 
For instance, anemia, edema, fatigue, hair loss, nerve 
problems, pain are the most common side effects which 
arise by cancer treatments [2]. The side effects can be 
more important if the patient is old and frail [3]. There-
fore, it is important to find alternative or complemen-
tary cancer treatments with fewer detrimental side ef-
fects and the low toxicity associated with the current 
chemotherapeutics. The anticancer properties of plants 
have been recognized for centuries. One of the most 
important group of plant secondary metabolites with 
anti-cancer activities, are flavonoids which have a com-
mon phenolic structure. The role of dietary flavonoids in 
cancer inhibition demonstrate that flavonoids are che-
mo preventive or therapeutic agents against cancer [4]. 
Flavonoids also have great antioxidant, antimutagenic, 
antibacterial and anti-inflammatory activities [5]. Flavo-
noids are phytochemical components that could find as 
free aglycones or glycoconjugates. Wogonin (5,7-dihy-

         

Figure 1: Chemical structure of (A) aglycone wogonin and (B) wogonoside.

         

Figure 2: Scutellaria baicalensis (Baikal skullcap).
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al. [15]. The reduction in the expression of inducible NO 
synthase and NF-κB activation results to NO production 
suppression [15]. In addition, it has been demonstrat-
ed that wogonin inhibits the expression and interaction 
of Toll-like receptor 4 (TLR4), Myeloid differentiation 
primary response 88 (MyD88) and TGF beta-activated 
kinase1 (TAK1). Wogonin can decreases the activation 
of NF-κB and p38 mitogen-activated protein kinases 
(MAPKs) pathway in lipopolysaccharide (LPS)-Induced 
Dorsal Root Ganglion (DRG) neurons [36]. Wogonin 
suppresses lipopolysaccharide and lipoteichoic acid-in-
duced iNOS gene expression and NO production while 
the Nor-wogonin (a structural analogue of wogonin 
with an OH substitution at C8) has not the same effect 
[41]. Roots of the S. baicalensis, has been used for the 
treatment of various chronic inflammatory diseases 
such as respiratory disease in oriental medicine [42]. 
Heo, et al. [43] reported that treatment of the hamster 
tracheal surface epithelial (HTSE) cells with wogonin, 
significantly inhibited ATP-induced mucin release by 
directly acting on airway mucin-secreting cells. The au-
thors suggested that wogonin can be used as mucoreg-
ulators during the treatment of chronic airway diseases. 
Tang, et al. [44] investigated the effects of wogonin on 
the expression of interleukin-1α (IL-1α), TNF-α and NF-
κB in leukocytes from Sprague-Dawley rats. The results 
showed that wogonin increased the IL-1α and TNF-α 
mRNA and can also over express these genes. These re-
sults showed the possible effects of wogonin on the IL-
1α and TNF-α mRNA expression by affecting the NF-κB 
in rat leukocytes.

TNF-α is a potential anti-cancer agent, however the 
most of the cancer cells are resistant to TNF-induced 
cell death, it might cause by the activation of NF-κB. 
Therefore, the sensitizing of the cancer cells to TNF-in-
duced cytotoxicity by blocking of NF-κB can help the 
cancer cells death [45]. Wogonin synergistically sensitiz-
es cancer cells derived from the cervix, ovary and lung 
to TNF-induced apoptosis by inhibition of catalase activ-
ity [46]. In addition, wogonin-induced reactive oxygen 
species block TNF-induced NF-κB activation [46].

Tumor necrosis factor related apoptosis inducing 
ligand (TRAIL) is a potential anticancer agent that kills 
tumor cells without any side effects on normal tissues 
[47]. However, most cancer cells remain refractory to 
TRAIL. Thus, developing combination therapies using 
sensitizers of the TRAIL pathway is one of the efficacious 
approaches. Ding, et al. [48] used TRAIL resistant human 
T-cell leukemia virus type 1 (HTLV1) associated adult 
T-cell leukemia/lymphoma (ATL) cells as a model sys-
tem for investigation the potential sensitizers of TRAIL 
induced apoptosis. The results showed that wogonin 
and the flavones apigenin and chrysin breaks TRAIL re-
sistance in HTLV1 associated ATL by inhibition of Cel-
lular FLICE (FADD-like IL-1β-converting enzyme)-inhibi-
tory protein (c-FLIP) transcription and by upregulation 

poor solubility and low bioavailability like other flavo-
noids [20,21]. However, with the increasing rate of can-
cer in the world, the new strategies are being explored 
to improve the bioavailability, therapeutic activity and 
selectivity of wogonin and other anti-cancer agents 
[21]. To solve the solubility and targeting problems, lipo-
somes [22-24], magnetic nanoparticles (MNPs) [25,26] 
and salification technology [20] can be used as drug 
delivery system. In this mini review, anti-inflammatory, 
antioxidant and anticancer activity of a specific flavo-
noid, wogonin which found in Scutellaria genus will be 
discussed. Moreover, the bioavailability of wogonin and 
utilization of nanotechnology to improve the bioavail-
ability of wogonin is also presented.

Anti-Inflammatory Effect
The anti-inflammatory properties of wogonin, such 

as inhibition of nitric oxide (NO) [27], 12-O-tetradeca-
noylphorbol-13-acetate (TPA)-induced cyclooxygen-
ase-2 expression [10,28] and prostaglandin E2 produc-
tion [29-32] have been reported previously. Yeh, et al. 
[33], revealed that the Endotoxin-Induced Prostaglan-
din E2 and Nitric Oxide production can be attenuated 
via Src-extracellular-signal-regulated kinase (ERK)1/2- 
nuclear factor kappa-light-chain-enhancer of activat-
ed B cells (NF-κB) pathway in BV-2 microglial cells by 
wogonin. Flavonoids especially wogonin can inhibits 
the activity of inflammation-associated enzymes, such 
as cyclooxygenases (COXs) and lipoxygenases [32,34]. 
Wogonin plays role as an expression regulatory of in-
flammation-associated proteins [32,34]. Wogonin had 
been referred as a selective COX-2 inhibitor [35,36]. The 
effects of wogonin on the expression of COX-2, Inter-
leukin 1 beta (IL-1b) (treated by arachidonic acid (AA)) 
tumor necrosis factor-α (TNF-a), and Intercellular Adhe-
sion Molecule 1 (ICAM-1) (treated by TPA) have been 
reported by Chi, et al. [37]. In TPA-induced inflamma-
tion, wogonin potently reduced COX-2 and TNF-a gene 
expression while ICAM-1 and IL-1b were weakly affect-
ed. The same results were observed in an acute-type 
model of AA-induced inflammation. These results show 
that wogonin can differentially regulates the expression 
of inflammation-associated genes in vivo [37]. The sup-
pression activity of wogonin on the cyclooxygenase-2 
expression in skin fibroblasts also has been reported 
previously [38]. Wogonin treatment against the contact 
dermatitis in the animal models, showed that wogonin 
inhibits the expression of IL-1b, COX2, interferon-γ, in-
tercellular adhesion molecule-1 and inducible nitric 
oxide synthase (iNOS) [39]. The inflammatory effect of 
wogonin on the gene expression of cyclooxygenase-2 
in human lung epithelial cancer cells also reported by 
Chen, et al. [40]. Their results showed that wogonin 
suppressed the COX-2 expression and also has the neu-
roprotective effects [40]. The inhibitor effects of wogo-
nin on the gene expression of TNF-α, IL-1b and iNOS in 
cultured brain microglia have been reported by Lee, et 
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The represented results showed that wogonin has an-
ti-inflammatory properties due to its inhibition of nitric 
oxide, cytokines, chemokines, and growth factors in 
double strand RNA-induced macrophages via the calci-
um-STAT pathway. 

The collaboration of wogonin with DNA at prevent-
ing the denaturation of DNA strands and providing 
of stability to genomic DNA against variety of chemi-
cal denaturants have been shown by Khan, et al. [57] 
(Figure 3). Recently, Li, et al. [58] showed that wogo-
nin acts as one of the effective agonist of peroxisome 
proliferator-activated receptors (PPAR-γ) in alcoholic 
liver disease. Thus, wogonin might acts as an efficient 
modulator of PPAR-γ expression activity. Some studies 
revealed that blocking phosphorylation of signal trans-
duction and transcription 1 and 3 (STAT1/3), Janus ki-
nases and p38 MAPK by wogonin can downregulate 
the expression of iNOS and COX-2 and attenuate the 
production of IL-6 and TNF-a [54,59] (Figure 3). TRAIL 
is a promising therapeutic agent against different types 
of cancer that kills various tumor cells without dam-
aging normal tissues. However, many tumors remain 
resistant to TRAIL. A combination therapies using sen-
sitizers of the TRAIL pathway is an effective approach 
to dominate TRAIL resistance. Wogonin is one of these 
therapies that can break TRAIL resistance. Ding, et al. 
[48] showed that wogonin can break the TRAIL resis-
tance by transcriptional downregulation of cFLIP (inhib-
itor of death receptor signaling) and by upregulation of 

of TRAIL receptor 2 (TRAILR2). cFLIP is a antiapoptotic 
factor and key inhibitor of death receptor signaling. 
Yang, et al. [46] have shown that wogonin inhibited the 
expression of the c-FLIP, which is coupled with potenti-
ation of TNF-induced caspase 8 activation that initiates 
apoptosis. Wogonin inhibits the TNF-a production in 
LPS stimulated RAW cells in vitro and reduces the lev-
el of circulating TNF-α in mice administrated D-galac-
tosamine and LPS in vivo [49]. The ERK, MAPK, and c-Jun 
N-terminal kinase (JNK) proteins in MAPK pathway, 
regulate various cellular functions of mammal leuko-
cytes, such as activation, chemotaxis, and proliferation 
[33,50,51]. They are important upstream regulators for 
the induced expression of proinflammatory mediators 
NO and cytokines in LPS-induced acute lung injury (ALI) 
[50,52,53]. Wei, et al. [54] investigated the inhibitory 
effect of wogonin on the phosphorylation of ERK, p38 
MAPK, and JNK in LPS-induced ALI in vivo. The authors 
found that pre-administration of wogonin inhibited lung 
edema, protein accumulation in bronchoalveolar la-
vage fluid (BALF), expression of iNOS and COX-2, phos-
phorylation of p38 MAPK and JNK of LPS-induced ALI. 
These results showed that wogonin has predominantly 
protective effect against LPS-induced ALI by inhibition 
expression of iNOS and COX-2 by blocking phosphory-
lation of p38 MAPK and JNK proteins in MAPK pathway. 
Furthermore, recent study by Yao, et al. [55] demon-
strated that LPS-induced ALI in female C57BL/6 mice is 
prevented by wogonin. Lee & Park [56], demonstrated 
the effects of wogonin on virus-induced macrophages. 

         

Figure 3: Anti-inflammatory properties of wogonin via several signaling pathways.
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and wogonin/HPb-CD complex was the most reactive 
form. In the inhibition of the hydroxyl radical-induced 
peroxidation of linoleic acid assay, wogonin plays a role 
as a protection of linoleic acid against oxidation [67].

Wogonin also has a remarkable role in reducing liver 
damage [68]. It caused by streptozotocin (STZ)-induced 
diabetes in rats due to alleviating of malondialdehyde 
(MDA), as a lipid peroxidation product. Wogonin also 
can elevate the total glutathione (T-GSH) because of its 
antioxidant, non-protein sulfhydryl (NP-SH), superoxide 
dismutase (SOD) and catalase (CAT) activity [68].

The critical roles of endoplasmic reticulum (ER) 
stress in a range of neurological disorders such as Spinal 
cord injury (SCI) had been shown recently [69-71]. Re-
markably, wogonin has widely clinical efficiency in sev-
eral nerve system diseases [15]. The anti-oxidant and 
anti-inflammatory properties of wogonin is the main 
feature of its neuroprotective effect [71]. Xu, et al. [71] 
showed that wogonin can protect DRG neurons death 
by preventing tunicamycin-induced ER stress in vitro.

Anticancer Effect
Wogonin has anticancer activity against several of 

cancers (Table 1). The inhibitory effect of wogonin was 
investigated in HT-29 human colorectal cancer cells 
[72]. Treatment with wogonin decreased the expression 
of B-cell lymphoma 2 (Bcl-2) and increased the expres-
sion of BCL2 Associated X (Bax) was in a dose-depen-
dent manner compared with the control. Furthermore, 
the induction of apoptosis was coupled with an inacti-
vation of PI3K/Akt in a dose-dependent manner [72]. 
It has been reported that wogonin induced prolonged 
elevation of intracellular Ca2+ levels in malignant T cells, 
leading to reactive oxygen species (ROS) accumulation 
and eventual apoptosis [18]. Wogonin has been prov-
en to enhance antitumor activity of TRAIL in vivo [73]. 
The co-treatment with wogonin and TRAIL of non-small-
cell lung cancer xenografted tumor model in nude mice 
showed that, the expression levels of antiapoptotic pro-
teins, including long form of cFLIPL, X-linked inhibitor of 
apoptosis protein (XIAP), and cellular inhibitor of apop-
tosis protein 1 and 2 (cIAP-1 and cIAP-2) were markedly 
reduced [73]. It indicated the wogonin triggered apop-
tosis via ROS-mediated downregulation of cFLIPL and 
IAP proteins [73]. In wogonin-treated murine sarcoma 
S180 cells, the bax and p53mRNAs level increased and 
the level of bcl-2 mRNAs decreased. It shows pro-apop-
totic effect of the wogonin through the inhibiting tu-
mor growth activity both in vitro and in vivo [17]. The 
inhibitory effect of wogonin was investigated in human 
lung adenocarcinoma cell line A549 by Regulating c-My-
c/S phase kinase associated protein 2/Fbox and WD 
repeat containing protein 7 (c-Myc/SKP2/Fbw7a) and 
histone deacetylase1/2 (HDAC1/HDAC2) Pathways [74]. 
Parajuli, et al. [75] reported that the leaf extract (SocL 
extract) of Scutellaria Ocmulgee Small, which showed 

TRAILR2.

Antioxidant Activity
The anti-oxidant activity of wogonin has been report-

ed previously [60]. Recent study showed that wogonin 
inhibits H2O2-induced vascular permeability by down-
regulating the phosphorylation of caveolin-1 associat-
ing with the suppression of stabilization of VE-cadherin 
and -catenin in human umbilical vein endothelial cells 
(HUVECs) [60]. Wang, et al. [61] found that wogonin can 
suppress the H2O2-stimulated action remodeling and 
albumin uptake of HUVECs, as well as transendothelial 
cell migration of the human breast carcinoma cell MDA-
MB-231. It has been reported that the supplementation 
of wogonin could reduce the hydroperoxide-induced 
apoptosis by a significant upregulation of a serine–thre-
onine kinase (p-Akt) expression in human APRE cell lines 
[62]. It could be deduced that the protective effect might 
be conducted via phosphoinositide-3-kinase (PI3K)/Akt 
pathway [62]. Excitotoxicity is the pathological process 
by which neurons are damaged and killed by the over 
activation of receptors for the excitatory neurotransmitter 
glutamate, such as the NMDA and AMPA receptors [63]. 
Cho & Lee [63] evaluated the effects of wogonin on ex-
citotoxicity as well as various types of oxidative stress 
induced neuronal damage in primary cultured rat cor-
tical cells. Their results showed that wogonin exhibits 
neuroprotective actions in cultured cortical cells by in-
hibiting excitotoxicity. Wogonin can also inhibit several 
types of oxidative stress-induced neuronal damage. Its 
antioxidant effects with radical scavenging activity may 
contribute to the neuroprotective effects. Free radical 
scavenging activity of phenolic compounds is related to 
the number and structure of phenolic hydrogen in their 
molecules [9]. Thus, even only a very small structural 
difference in the flavonoid skeleton would lead to a 
marked difference in the potency of the antioxidative 
and anti-inflammatory activities [64]. Huang, et al. [64] 
studied the antioxidative and anti-inflammatory effects 
of the flavones: Baicalein, oroxylin A and wogonin. They 
showed that all these flavones exhibit significant anti-
oxidative and free-radical scavenging activities. Among 
them wogonin displayed extremely potent inhibition of 
NO production and strong antioxidative activity. These 
results suggested that the potent activity of wogonin 
was related to its unique structure [63]. To improve 
the solubility, chemical stability and bioavailability of 
poorly soluble compounds, cyclodextrin (CD) complex 
can be used effectively [65]. In the recent years some 
studies had been reported the coverage of wogonin 
with CDs, including b-CD and hydroxypropyl-cyclodex-
trin (HP-b-CD) in solution [58,66]. Li, et al. [66] synthe-
sized the complexes of wogonin with b-CD and HP-b-CD 
by refluxing method, and determined the effect of the 
complexation process on their antioxidant capacity by 
DDPH assay. The experimental results showed that the 
Wogonin and CDs complexes had anti-oxidant activity 

https://doi.org/10.23937/2572-3278.1510039


ISSN: 2572-3278DOI: 10.23937/2572-3278.1510039

Gharari et al. J Nutri Med Diet Care 2019, 5:039 • Page 6 of 11 •

(hTERT), human telomerase-associated protein 1 (hTP1) 
and c-myc messengl-1 (myeloid cell leukemia) [79]. Nav-
itoclax (ABT-263), an orally bio-available small-molecule 
mimetic of the Bcl-2 homology domain 3, which inhibit 
Bcl-2, Bcl-xL, and Bcl-w with high affinities [80]. ABT-263 
has shown anti-cancer effects mainly on hematological 
malignancies [81,82]. Polier, et al. [83] showed that the 
anti-cancer flavone, e.g., wogonin targeting cyclin-de-
pendent kinase 9 (CDK9) and potentiates the anti-can-
cer efficacy of the Bcl-2 family inhibitor ABT-263. They 
showed that wogonin enhances ABT-263-induced apop-
tosis in different cancer cell lines. In combination with 
ABT-263 wogonin, promotes in vivo tumor regression in 
a human T-cell leukemia xenograft mouse model. It in-
dicated that wogonin reduce the effective dose of ABT-
263 thereby possibly decreasing the risk of adverse side 
effects. A recent study by Dandawate, et al. [84] showed 
that SocL and flavonoid wogonin could inhibit TGF-b1-
induced Treg activity in malignant gliomas. Their studies 
revealed that inhibition of TGF-b1-induced Treg activity 
by SocL or wogonin may involve to a certain extent, an 
inhibition of ERK 1/2 (P44/42) MAPK activity [84].

It is well-appointed that anticancer agents induce 
apoptosis, which is necessary to keep cellular homeo-
stasis and normal development. Chow, et al. [85] car-

some of the best anti-proliferative activity, contained 
only wogonin. These results suggested that probably 
wogonin could potentially have very high anticancer ac-
tivity among the flavonoids examined and could have 
positive interaction with other phytochemicals even at 
low concentration. The investigation of wogonin effects 
on human osteosarcoma cell line (U-2 OS) showed that 
a dose- and time-dependent reduction occurred in cell 
viability after exposure to wogonin [76]. Wogonin trig-
gers apoptosis in U-2 OS cells through the activation of 
caspase-3, induction the production of ROS and intra-
cellular Ca2+, and altered the levels of apoptotic proteins 
[76] or ribonucleic acid (m-RNA) expression in the HL-60 
leukemia cells [77]. Tumor initiation, progression and 
resistance to conventional chemotherapies are tightly 
associated with over-expression of anti-apoptotic Bcl-2 
family proteins Bcl-2, Bcl-xL, Bcl-w and Mc. Enomote, et 
al. [78] demonstrated that wogonin is likely to potenti-
ate the antitumor activity of etoposide and ameliorates 
its adverse effects through potentiating of anticancer 
action of etoposide. This effect is seems to be due to 
P-glycoprotein (P-gp) inhibition activity of etoposide 
and accumulation of P-gp. Wogonin has been reported 
to induce apoptosis through down-regulation of Bcl-2 
and inhibits of human telomerase reverse transcriptase 

Table 1: Anticancer activity of wogonin against various cancers.

Tumor type Cell lines Mechanism Ref
Leukemia HL-60 Activation of caspase 3, H2AX phosphorylation, cleavage of 

PARP
[101,102]

B-type human 
leukemia

NALM-6 VEGF, c-Myc, reduced production of NF-kB [103]

Multiple myeloma 8226 Decrease in ABCG2 protein, suppression of Akt1 activity [104,105]

Hepatocellular 
carcinoma 

HepG2 Decrease in Bcl-2 protein lead to increase in Bax and pro-
caspase-3 activity

[106] 

Hepatocellular 
carcinoma

HepG2 production of ROS, ER stress [106]

Hepatocellular 
carcinoma

HepG2 reduced production of Nrf2 [106]

Colorectal cancer SMMC-7721 Reduced activity of PI3K/AKT, increasing of Bax protein, Bcl-
2↓, caspase-3↑, p21

[106]

Colorectal cancer HCT116 HIF-1α↓, PI3K/AKT↓ [107]

Colorectal cancer HCT116 G1 arrest, deregulation of Wnt/β-catenin signaling pathway [60]

Colorectal cancer HepG2, Bel7402 Reduced production of Cyclin D1, cyclin E, CDK4/6, Bcl-2 and 
MMP2, Increased cleavage of caspase-3 and caspase-9 

[108]

Breast cancer HT-29 NF-κB, Nrf2, AKT [109,110]

Breast cancer MCF-7 Decrease in PI3K/AKT activity [109,111]

Glioma U87-MG, U343-MG, 
U373, T98G, and MCF-
10A

AMPK, p53 [112]

Lung cancer A549 IL-6/STAT3 [112]

Cervical cancer HPV-16 E6↓, E7↓ [113]

Nasopharyngeal 
carcinoma

NPC-TW076/039 GSK-3β↓, ΔNp63↓ [85]

Osteosarcoma U-2 OS ER stress [76]
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regulating MDR1 in K562 cells. The results showed that 
it cans significantly downregulate the transcription of 
MDR1 mRNA and expression of P-glycoprotein in K562/
A02 cells. Additionally, the reversible effect, apoptosis 
rate and accumulation of intracellular daunorubicin of 
daunorubicin-wogonin magnetic nanoparticles were 
significantly higher than daunorubicin + wogonin and 
daunorubicin magnetic nanoparticle groups. These find-
ings suggested that the magnetic nanoparticle formula-
tion of wogonin would be a promising strategy for over-
coming multidrug resistance in cancer cell [25].

Due to nontoxic, biocompatible, and biodegradable 
property, liposomes can be used as a versatile and ef-
fective nanometer-scale drug delivery system [92,93]. 
It has been demonstrated that liposomes can encap-
sulate both lipophilic and hydrophilic as well as am-
photeric drugs [94,95]. Liposomes also can improve 
the oral bioavailability of poorly bioavailable drugs by 
increasing drug solubility and stability [96,97]. Lipo-
somes have been applied to carry anticancer drugs with 
strong toxic effects for live tumor therapy. Liposomes 
also are very useful in targeted therapy of liver cancer 
[98]. They incorporated of wogonin in a novel glycyrrhe-
tinic acid (GA)-modified WG liposome (GA-WG-Lip) that 
can rapidly accumulate in the liver with a long reten-
tion time, and has a better tumor inhibitory ratio than 
that of the unmodified liposomes due to increased re-
ceptor-mediated uptake of liposomes by liver-targeted 
cells [98]. Wogonin in the solution formulation seems to 
be better dissolved in the intestinal juice and well trans-
ported across the intestinal epithelial cells. Because 
wogonin does not produce significant cytotoxicity, in-
crease apoptosis in multidrug-resistant cancer cells, or 
decrease induction of apoptosis in normal cells [99] it 
could be used an ideal P-gp inhibitor with high efficiency 
and low toxicity [100].
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