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Abstract
Rapid Eye Movement (REM) sleep deprivation is under-
stood to be associated with more severe negative effects 
than REM fragmentation. Comparison of the corticosterone 
response between these patterns of sleep disruption has 
not been well characterized. Black Swiss mice were ex-
posed to 1-day and 3-day periods of REM deprivation with 
inverted flower-pot method or REM fragmentation using the 
moving bar method. Immediately after experimental proce-
dures mice were sacrificed and blood collected. Corticos-
terone levels were measured in the plasma portion using 
enzyme-linked immunoassay. Corticosterone levels in both 
REM deprivation and REM fragmentation were elevated in 
comparison to baseline, but were not significantly different 
from each other. In continuous conditions of sleep disrup-
tion- either REM deprivation or REM fragmentation- mark-
ers of stress are elevated to a similar degree.
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conditions as diverse as hypertension [4] and bipolar 
disorder [5]. In animal models, REM deprivation can be 
devastating with disruption of long-term potentiation 
[6] induction of apoptosis [7] oxidative stress [8] and 
occasionally death [9].

Different types of sleep deprivation may have dif-
ferent physiological effects. Total deprivation of REM 
sleep (as might occur in a manic episode) is rare. Sleep 
is more commonly fragmented, separated into dis-
crete blocks that may or may not include REM periods. 
Relative stress response between these has not been 
adequately examined. Using mice, we modeled REM 
deprivation using an adapted version of the inverted 
flowerpot method (IFM) [10] and modeled REM frag-
mentation using the moving bar method (MBM) [11].

Materials and Methods

Male Black Swiss mice were obtained (The Jackson 
Laboratory, Bar Harbor, ME) and were housed in our 
animal care facility on a 12:12 light-dark cycle (6 am-6 
pm). Mice were given one week to acclimate to the care 
facility. Protocols were approved by the Institution-
al Animal Care and Use Committee (Protocol Number 
11078).

Sleep fragmentation chambers (Lafayette Instru-
ments, Lafayette, IN) were utilized for REM fragmenta-
tion. Each cage contained 3-5 mice, with food and wa-
ter available ad-libitum. Chambers were programmed 
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Introduction

Disrupted sleep is common and is widely considered 
to have adverse effects on general wellbeing and phys-
ical and mental health. Sleep disturbance interferes 
with diverse physiological processes such as metabo-
lism [1] immune responses [2] neuroendocrine func-
tioning, cognitive processing, and emotional states [3]. 
Moreover, loss of sleep often exacerbates preexisting 

Check for
updates

https://doi.org/10.23937/2572-4053.1510018
https://doi.org/10.23937/2572-4053.1510018
http://crossmark.crossref.org/dialog/?doi=10.23937/2572-4053.1510018&domain=pdf


ISSN: 2572-4053DOI: 10.23937/2572-4053.1510018

Gao et al. J Sleep Disord Manag 2017, 3:018 • Page 2 of 4 •

so that a moving bar would sweep across the cage floor 
at 15 second intervals for one day (24 hrs) or three days 
(72 hrs).

For REM deprivation we utilized water-filled cages 
filled to 1 cm below the lip of a single platform (4 cm 
diameter). Food and water were provided for 30 min. 
three times daily. A human observed the animals con-
tinuously to rescue them if they fell into the water.

Control mice were housed in the animal care facili-
ty before being sacrificed. All mice were decapitated in 
AM for blood collection (between 8 AM and 2 PM, be-
cause it has been shown that corticosterone levels are 
stable over this time period in control mice [12]. After 
the serum was separated from the blood, it was stored 
in plastic tubes at -80 °C. Corticosterone measurements 
utilized Arbor Assays Detect X® Enzyme Immunoassay 
kit (Catalog Number K014, Arbor Assays, Ann Arbor, 
Michigan) following manufacturer’s protocol. Brief-
ly, 1 μL of serum was treated with 1 μL of dissociation 
reagent for 5 minutes and diluted to 1:200. Samples 
were run in duplicate with a sheep polyclonal antibody 
against corticosterone. A microplate reader (Anthos 
Labtec Instruments, Salzburg, Austria) measured inten-
sity at measurement filter 450 nm, and reference filter 
405 nm for standards and all samples. Standard curves 
were created using My Assays.com online software 
(http://www.myassays.com/) and used to determine 
corticosterone concentrations of experimental samples.

Data were stratified according to intervention and 
duration of deprivation and compared with student 
t-tests. Proportions were examined by a test for propor-
tional data [13]. A P value of < 0.05 was considered to 
indicate statistical significance.

Results

Corticosterone levels were elevated compared to 
baseline in all conditions (Figure 1). Baseline level was 
65.71 ± SEM 11.45 ng/mL in control mice (n = 18). REM 

fragmentation resulted in elevations of corticosterone 
concentrations after one day (148 ± 17.9 ng/mL, n = 
11, t = 4.08, P = 0.0004), and three days (143.0 ± 22.4 
ng/mL, n = 8, t = 3.42, P = 0.002). REM deprivation also 
increased corticosterone levels after one day (163.0 
± 13.8 ng/mL, n = 13, t = 5.42, P < 0.0001), and three 
days (147.6 ± 19.8 ng/mL, n = 12, t = 3.67, P = 0.001). In-
ter-group comparisons showed no difference between 
the different forms of sleep disruption (1-day t = 0.65, P 
= 0.52, 3-day t = 0.0143, P = 0.89).

REM deprivation was more problematic than REM 
fragmentation. None of the animals died in the mov-
ing bar cages, but 3 mice expired in the 3-day inverted 
flowerpot group (0/8 vs. 3/22, z = 1.86, P > 0.5 [an addi-
tional 7 animals, 31.8%, did not die but had to removed 
from the experiment due to inability to remain on the 
platform before the 3 days were completed, z = 3.2, P 
< 0.01]).

Discussion

Models of sleep disruption are usually associated 
with some other stressor that complicates interpreta-
tion [14-16]. Thus, elevations of corticosterone have 
been reported in many of the available animal models 
[17,18]. However, one of the major variables in these 
models is also the type of sleep disruption. Thus, the IFM 
is known to severely deprive animals from REM sleep 
[10] while the MBM allows animals to go into REM but 
fragments those periods [11]. We undertook this exper-
iment because our experience was that REM-depriva-
tion appeared to affect the animals more severely than 
REM fragmentation.

The results suggest that the IFM is more taxing on 
the mice than the MBM. Nearly 13.6% of animals ex-
posed to the IFM died after 3 days, but none of the an-
imals died in the MBM. This may be the first report of 
death in REM deprivation in mice [19] although REM 
deprivation appears to kill rats [9] and may play a role 
in unexplained deaths of human infants [20]. Further-
more, an additional 31.8% of mice exposed to the IFM 
could not complete the 3 days of the experiment, but all 
of the animals exposed to the MBM did complete the 
trial (P < 0.01). Thus, it is very surprising that there were 
no differences in corticosterone levels between the 2 
methods at the end of the study (although the excluded 
animals were not examined) (Figure 1). Equally as un-
expected is the absence of difference between 1 day of 
IFM (where all the animals completed the trial), and 3 
days of the same procedure (where a total of 45.5% of 
the animals could not complete the experiment due to 
fatigue or death (Figure 1)). Our baseline measures of 
mouse corticosterone were in line with previous stud-
ies [11]. Thus, while we initially hypothesized that there 
would be a differential stress response between REM 
deprivation and REM fragmentation, the results of our 
study suggest no difference in corticosterone response. 
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Figure 1: Serum corticosterone levels at baseline (1st 
column in each group), 1 day of treatment (2nd column in 
each group) and 3 days of treatment (3rd column in each 
group) for animals that underwent REM-fragmentation, 
and REM-deprivation. All treatment levels are significant-
ly greater than baseline (p < 0.01), but none are different 
from each other. All values are means in ng/mL ± standard 
deviation.
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and also helped in the writing of the paper.

Brandon Akers performed the inverted flowerpot 
and some of the moving bar sleep deprivation experi-
ments and performed much of the data analysis.

Michael B. Roberts performed the moving bar and 
some of the sleep deprivation experiments and helped 
Dr. Gao with the corticosterone measurements.

Rif S. El-Mallakh supervised all aspects of the exper-
iments. He designed the experiments. He co-wrote the 
paper with Dr. Gao.
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There are important limitations to this present study 
to note. Historical [10 and recent studies [21,22] of 
sleep deprivation used rats. We used mice. Addition-
ally, we did not monitor EEG to confirm the expected 
sleep disturbance of the two methods. The inverted 
flowerpot method is generally seen as more stressful 
to the mice due to social isolation, possible hypother-
mia, and relative immobilization [11,14]. In our studies 
we observed an excess of deaths and intolerance to the 
inverted flowerpot. This may have eliminated animals 
that would have had a greater corticosterone response, 
and brought the final average down. Finally, we did not 
examine other markers of stress response which may 
explain the differential response regarding death or in-
tolerance between the two methods.

Despite these shortcomings, our present study pres-
ents evidence of similar HPA axis activation between 
REM fragmentation and REM deprivation. Yet other 
studies have noted that for short durations of sleep frag-
mentation there is no significant increase in cortisol af-
ter 6 hours [11]. There is a paucity of studies examining 
long duration sleep disturbance. Our study examined 
24 and 72 duration of two different forms of disturbing 
sleep. While 3 days of exposure to IFM, but not MBM, 
was fatal in some animals, corticosterone response was 
equal in both groups. 
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