Cerebello-Pontine Angle Glioblastoma with Cervical Spine Metastasis: A Case Report

Giuseppe Mariniello, MD1, Carmela Peca, MD1, Maria Laura Del Basso De Caro, MD2, Sergio Corvino, MD1, Valentina Orlando, MD2, Elia Guadagno, MD2 and Francesco Maiuri, MD*

1Department of Neurosciences and Reproductive and Odontostomatological Sciences, Neurosurgical Clinic, University of Naples Federico II, Naples, Italy
2Department of Advanced Biomorphological Sciences, University of Naples Federico II, Naples, Italy
*Corresponding author: Francesco Maiuri, MD, Department of Neurosciences and Reproductive and Odontostomatological Sciences, Neurosurgical Clinic, University of Naples Federico II, Naples, Italy, Tel: +39 81-7462581, Fax: +39 81-7462594

Abstract
This article reports a left cerebellopontine angle glioblastoma presenting with two week history of rapidly progressive hearing loss and trigeminal pain, treated by subtotal resection and radiotherapy with concomitant and adjuvant temozolomide. At one year, local tumor control and diffuse neoplastic seeding in the cervical spinal cord were evidenced.

Glioblastomas involving the cerebellopontine angle are exceptional with only 10 reported cases. The possibility of a glioblastoma should be considered in the differential diagnosis of malignant cerebellopontine angle tumors. The standard treatment including maximum tumor resection and Stupp protocol is justified to obtain local tumor control.

Keywords
Glioblastoma, Cerebellopontine angle tumor, Spinal cord metastasis

Introduction
Primary infratentorial glioblastomas are uncommon in adult patients and are found in the cerebellum (1.5%) or brainstem (4.1%) [1]. The cerebellopontine angle is an exceptional location of glioblastoma, with only 10 reported cases [2-11]. Six of them were intra-axial, arising from the cerebellum [3,7,9] or pons [2,4,6], with lateral exophytic growth.

Three cases [5,10,11] were primary extra-axial glioblastomas of the cerebellopontine angle arising from the root entry zone of the eighth cranial nerve, whereas in one [8] the origin was not defined.

This report describes a case of glioblastoma of the cerebellopontine angle, with local tumor control and diffuse neoplastic seeding of the cervical spinal cord during the follow-up.

Case Description
A 49-year-old female patient was observed because of a two-week history of dizziness, rapidly progressive left deafness and trigeminal pain in V2 and V3 on the left side. Some days before admission, headache and gait instability also occurred. At neurological examination complete hearing loss on the left side, nystagmus on the lateral eye movements, left facial hypoesthesia and slight ataxia were found. The audiometric test confirmed the finding of complete left anacusia.

Magnetic resonance imaging (Figure 1) revealed a tumor mass in the left cerebellopontine angle, involving left cerebellar hemisphere and the cisternal portion of the VII and VIII cranial nerves. It was hypointense in T1 weighted sequences and hyperintense in T2 weighted and FLAIR sequences, and showed marked and homogenous enhancement.

At surgery, the left cerebellopontine angle was exposed through left suboccipital retrosigmoid approach. A grey-reddish, moderately vascularized tumor was found in the cerebellopontine angle. It mainly grew...
Radiotherapy with concomitant and adjuvant temozolomide, according to the Stupp [12] protocol, was administered. Magnetic resonance studies at 3 and 6 months showed no residual tumor.

One year after surgery the patient complained of dizziness and gait difficulty. Cranial magnetic resonance (Figure 3a) showed enhancement of the left VII and VIII cranial nerves with no tumor recurrence. Magnetic resonance of the cervical spine (Figure 3b, Figure 3c and Figure 3d) evidenced diffuse neoplastic seeding on the posterior and left lateral aspect of the cervical spinal cord. Second line chemotherapy with fotemustine was administered. The patient died 3 months later.

Discussion

This case is noteworthy for several features, including the exceptional location in the cerebellopontine angle (with 10 reported cases), the clinical onset with rapidly progressive hearing loss and trigeminal pain, and the subsequent tumor seeding in the cervical spinal cord, inspite of the tumor control at the initial location.

Among the 10 reported cases [2-11] (Table 1) seven were men and three women; three of them were very young (22-years-old or less). Six were exophytic tumors arising from the cerebellum [3,7,9] or pons [2,4,6] and three [5,10,11] arose from the eighth cranial nerve (likely from the nervous tissue of its proximal part or from neuroglial cells in the surrounding leptomeninges).

The clinical history before diagnosis was very short (from one hour to the three months) in all but one cases. The neurological symptoms were those of unilateral involvement of the cranial nerves of the cerebellopontine angle, mainly hearing loss and facial paresis; ataxia and intracranial hypertension were also

in the cisternal space involving the acoustic and facial nerves, and also infiltrated the pia and cortex of the lateral cerebellar surface. Intraoperative histology of a tumor specimen was in favour of high grade glioma. Large tumor resection was made by microsurgical technique by sparing the cranial nerves. Locoregional chemotherapy with carmustine wafers was also administered.

The histopathological specimen (Figure 2) showed a highly cellular tumor with small cells, with hyperchromatic nuclei and minimal discernible cytoplasm. The immunohistochemical staining of tumor cells revealed GFPA expression, proliferation index Ki67 Li 30% and negative IDH expression (IDH wild type). The final diagnosis was glioblastoma (WHO IV).

Postoperatively, slight and transient left facial paresis and remission of the trigeminal pain were observed.
Table 1: Neurological symptoms: Unilateral involvement of the cranial nerves of the cerebellopontine angle.

<table>
<thead>
<tr>
<th>N. Cases</th>
<th>Authors/Year</th>
<th>Age/Sex</th>
<th>Duration of Symptoms</th>
<th>Symptoms</th>
<th>Surgical Treatments</th>
<th>Histology</th>
<th>Adjuvant Treatments</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Swaroop and Whittle [2]</td>
<td>22 M</td>
<td>1 Year</td>
<td>Hearing Loss, Ataxia, Dysphagia</td>
<td>Subtotal Resection</td>
<td>GBM IV</td>
<td>None</td>
<td>Dead after 2 Months</td>
</tr>
<tr>
<td>2</td>
<td>Kasliwal, et al. [3]</td>
<td>11 M</td>
<td>15 Days</td>
<td>VII and VIII CN Dysfunction</td>
<td>Subtotal Resection</td>
<td>GBM IV</td>
<td>None</td>
<td>Dead after 2 Months</td>
</tr>
<tr>
<td>4</td>
<td>Wu, et al. [5]</td>
<td>60 M</td>
<td>2 Months</td>
<td>Hearing Loss, Facial Pain, Ataxia, Fever</td>
<td>Subtotal Resection</td>
<td>GBM IV</td>
<td>None</td>
<td>Dead after 2 Months</td>
</tr>
<tr>
<td>6</td>
<td>Matsuda, et al. [7]</td>
<td>69 M</td>
<td>1 Hour</td>
<td>Ataxia, Memory Loss</td>
<td>Stereotactic Biopsy</td>
<td>GBM IV Ki67 neg, IDH neg, Ki67 23%</td>
<td>RT + TMZ (Stupp Protocol)</td>
<td>Alive at 1 Year</td>
</tr>
<tr>
<td>7</td>
<td>Lee, et al. [8]</td>
<td>71 F</td>
<td>3 Months</td>
<td>Ataxia, Memory Loss</td>
<td>Stereotactic Biopsy</td>
<td>GBM IV Ki67 Li: 30%</td>
<td>RT + TMZ (Stupp Protocol)</td>
<td>Alive at 3 Months</td>
</tr>
<tr>
<td>9</td>
<td>Takami, et al. [10]</td>
<td>55 M</td>
<td>-</td>
<td>Hearing Loss, Ataxia, Facial Paresis</td>
<td>Subtotal Resection</td>
<td>GBM IV</td>
<td>None</td>
<td>Dead at 2.5 Months</td>
</tr>
<tr>
<td>11</td>
<td>Present Report</td>
<td>49 F</td>
<td>2 Weeks</td>
<td>Cerebellar Deafness, Trigeminal Pain, Ataxia</td>
<td>Subtotal Resection</td>
<td>GBM IV</td>
<td>RT</td>
<td>Alive at 3 Months</td>
</tr>
</tbody>
</table>

CN: Cranial nerve; ICH: Intracranial hypertension; GBM: Glioblastoma; RT: Radiotherapy; TMZ: Temozolomide.
The outcome of cerebellopontine angle glioblastoma is poor. Four among 8 patients whose outcome is specified died within 3 months after surgery and only 2 were still alive at one and two years respectively, as in our case. This may be explained by the difficulty of gross total resection and the extra-axial cisternal location with increased risk of leptomeningeal dissemination.

In the present case an extensive leptomeningeal diffusion from the initial tumor site along the cervical spinal canal, with involvement of the cervical spinal cord occurred one year after surgery. This was responsible for the rapid clinical worsening and death, in spite of the absence of tumor regrowth at the initial site.

Conclusion

A short clinical history with rapidly progressive symptoms and signs of unilateral seventh and eighth cranial nerves should suggest a malignant cerebellopontine an-

Figure 3: Cranial and cervical post-contrast magnetic resonance, one year after surgery. a) Cranial axial image, T1-weighted sequence: No tumor recurrence; b-d) Cervical images; b) T2-weighted sagittal sequence; c,d) T1-weighted sagittal; c) Axial; d) Sequences after contrast administration: Diffuse neoplastic seeding on the posterior and lateral aspects of the cervical spinal cord up to C3.
gle tumor. The magnetic resonance must focus the diagnosis of glioblastoma on spectroscopy and perfusional sequences. Maximum tumor resection followed by radiotherapy and temozolomide should be used also for this peculiar location. However, the best management will be defined from a larger number of cases.

References