‘Talk and Die’ with Potential Medicolegal Issue: A Case and Literature Review

Masanori Kurimoto, MD* and Hiromichi Yamamoto, MD

Department of Neurosurgery, Kurobe City Hospital, Toyama, Japan

*Corresponding author: Dr. Masanori Kurimoto, Department of Neurosurgery, Kurobe City Hospital, Toyama, Japan, Tel: +81-765-54-2211, Fax: +81-765-54-2962

Abstract

‘Talk and die’ patients are a small number of patients who present with a mild head injury (Glasgow coma scale [GCS] 13-15) and then subsequently deteriorate and die from intracranial causes. We report the case of a 60-year-old man who had the first mild head injury, followed by chronic subdural hematoma and finally suffered from the high-energy second head injury and was ambulated to our hospital with a GCS of 15. He presented with severe headache and uncontrollable high blood pressure but he could talk. Computed tomographic scans showed a small brain contusion and traumatic subarachnoid hemorrhage (SAH) in the right temporal lobe, the left frontal lobe, and the anterior interhemispheric space around the pericallosal artery. 2 hours after injury, he suddenly vomited and then suffered from the status epilepticus. Seizures were controlled after administration of consecutive 3 times intravenous 10 mg diazepam and followed by one shot thiopental 250 mg, then he was intubated, and ventilated. 4 hours after the injury, his GCS was 4 and bilateral pupils were moderately dilated and fixed. CT showed massive bifrontal and right temporal contusion hematoma and massive subarachnoid hemorrhage. He died two days after admission. One of his family members claimed malpractice and then suffered from the status epilepticus. Seizures were controlled after administration of consecutive 3 times intravenous 10 mg diazepam and followed by one shot thiopental 250 mg, then he was intubated, and ventilated. 4 hours after the injury, his GCS was 4 and bilateral pupils were moderately dilated and fixed. CT showed massive bifrontal and right temporal contusion hematoma and massive subarachnoid hemorrhage. He died two days after admission. One of his family members claimed malpractice and then suffered from the status epilepticus. Seizures were controlled after administration of consecutive 3 times intravenous 10 mg diazepam and followed by one shot thiopental 250 mg, then he was intubated, and ventilated. 4 hours after the injury, his GCS was 4 and bilateral pupils were moderately dilated and fixed. CT showed massive bifrontal and right temporal contusion hematoma and massive subarachnoid hemorrhage. He died two days after admission. One of his family members claimed malpractice and then suffered from the status epilepticus. Seizures were controlled after administration of consecutive 3 times intravenous 10 mg diazepam and followed by one shot thiopental 250 mg, then he was intubated, and ventilated. 4 hours after the injury, his GCS was 4 and bilateral pupils were moderately dilated and fixed. CT showed massive bifrontal and right temporal contusion hematoma and massive subarachnoid hemorrhage. He died two days after admission.

Keywords

Mild traumatic brain injury, Talk and die, Medico legal issue

Introduction

Reilly, et al. first introduced the term ‘talk and die’ in 1975, before the advent of computed tomographic (CT) scans to describe the small number of patients who present with a mild head injury (GCS 13-15) and then subsequently deteriorate and die from intracranial causes [1]. ‘Talk and deteriorate’ patients had been defined as patients who articulate recognizable words at some point after experiencing a head injury and then deteriorate to a GSC of ≤ 8 within 48 hr of the impact [2-5]. They represent a very small but important subgroup of patients with brain injury [6,7]. In majority of these patients, the cause of this deterioration is intracranial hematoma [2-7].

Several clinical practice guidelines (CPGs) have been issued [7-13]. They state that patients who have incurred a mild head injury and have a glasgow coma scale [GCS] score of 13-15 on their initial evaluation and imaging evidence of traumatic subarachnoid hemorrhage (SAH) and/or intraparenchymal contusion do not require a neurosurgical consultation or transfer to tertiary care center and can be safely discharged [7-13]. These studies have described the utility of CPGs for brain injury treatment but most of these CPGs have focused primarily on cost-effectiveness and the allocation of resources [7-13]. In fact, the number of such patients who received neurosurgical intervention is < 1% [7-14].

A prospective cohort study conducted in Canada that included consecutive adults who presented with a GCS score of 13-15 after head injury revealed that 8% of the patients had a clinically important brain injury and only...
1% required neurosurgical intervention [15]. However, clinical studies have revealed that there is heterogenous pathophysiology among patients with GCS scores of 13-15, and detailed clinical pictures in case by case are obscure [16]. Highest incidence of ‘talk and die’ patients among a population with mild head injury was 2.6% [17]. The CPGs have recently been met with some skepticism - particularly within the neurosurgical community - because the promise of CPGs has not been matched by the reality, and those who oppose CPGs fear that such guidelines will hinder the art of medicine and limit physician and patient autonomy [18]. Traumatic brain injury is necessarily a neurosurgical pathology, and it has been opined that the exclusion of a neurosurgical consultation should be the exception rather than the rule [19].

The prediction and prevention of the ‘talk and die’ status is an old but still unsolved problem [20,21]. Here, we report a ‘talk and die’ patient who suffered a high-energy head trauma, and we discuss possible factors in his deterioration, e.g., a medical history of previous head trauma, subsequent chronic subdural hematoma, hyperperfusion by autonomic dysregulation, status epilepticus, hypertension, etc. and we extend the discussion to the potential medicolegal issues.

Case Report

A 60-year-old Japanese man was brought to our hospital with a GCS of 15. He had fallen from a standing position, and the right parietal region was impacted. He had a 3-cm laceration of the scalp; it was treated with a stapler. CT scanning showed a thin right parietal subdural hematoma (Figure 1). He had a mild headache and nausea on admission, but they disappeared within a few days and he was discharged 7 days post-admission.

Two months later, the patient developed disorientation, dysarthria, and weak right hemiparesis and was admitted to our hospital. Under the diagnosis of a left chronic subdural hematoma (Figure 2), it was treated with a stapler. CT scanning showed a thin right parietal subdural hematoma (Figure 1). He had a mild headache and nausea on admission, but they disappeared within a few days and he was discharged 7 days post-admission.

The prediction and prevention of the ‘talk and die’ status is an old but still unsolved problem [20,21]. Here, we report a ‘talk and die’ patient who suffered a high-energy head trauma, and we discuss possible factors in his deterioration, e.g., a medical history of previous head trauma, subsequent chronic subdural hematoma, hyperperfusion by autonomic dysregulation, status epilepticus, hypertension, etc. and we extend the discussion to the potential medicolegal issues.

Case Report

A 60-year-old Japanese man was brought to our hospital with a GCS of 15. He had fallen from a standing position, and the right parietal region was impacted. He had a 3-cm laceration of the scalp; it was treated with a stapler. CT scanning showed a thin right parietal subdural hematoma (Figure 1). He had a mild headache and nausea on admission, but they disappeared within a few days and he was discharged 7 days post-admission.

Two months later, the patient developed disorientation, dysarthria, and weak right hemiparesis and was admitted to our hospital. Under the diagnosis of a left chronic subdural hematoma (Figure 2), it was treated with a stapler. CT scanning showed a thin right parietal subdural hematoma (Figure 1). He had a mild headache and nausea on admission, but they disappeared within a few days and he was discharged 7 days post-admission.
the patient's conscious level. Intravenous nicardipine (> 30 mg/hr) was continuously administered to the patient in an attempt to decrease his blood pressure to < 140 mmHg, but his blood pressure continued to be > 180/100 mmHg. At 2 hr after admission, he suddenly vomited and then fell into status epilepticus. The seizures were refractory despite three consecutive intravenous administrations of 10-mg diazepam. A single injection of 250-mg thiopental was administered, and the patients was intubated and ventilated. His seizures were controlled with a continuous administration of thiopental (5 mg/kg/hr) under the continuous mandatory ventilation. Immediately after the seizure and the respiratory control, it was 2.5 hr after the patient’s fall/head injury, a second CT examination revealed massive bifrontal and right temporal lobe hematomas and a massive SAH (Figure 4). These seemed to be multiple delayed contusion hematomas and an SAH due to an aneurysmal rupture or multiple arterial dissections. There was no indication of decompressive craniotomy and hematoma evacuation. The patient died next day. A family member of the patient claimed misdiagnosis or malpractice on our part because of the unexpected early death. After the coroner’s post-mortem examination, the coroner examined the patient’s CT images and concluded that a judicial autopsy was unnecessary. We asked the patient’s family for permission to perform an autopsy, but they did not give their consent. They indicated a desire to take the matter up in court. We repeatedly explained to the family members that the delayed hematoma and SAH

![Figure 3:](A-D) CT scan at 45 min after the high-energy injury demonstrating contusions or traumatic subarachnoid hemorrhage (SAH) in the right temporal tip; (E,F) SAH in the anterior interhemispheric space around the pericallosal artery.)
Figure 4: CT scan at 4 hr post-injury displaying multiple large contusion hematomas and the massive SAH.

were unpredictable. We apologized for the inadequate informed consent in the patient’s case, which did not mention the possibility of the ‘talk and die’ status on admission. The family withdrew the legal proceeding.

Discussion

We speculate that after the patient’s second and fatal head injury, increased intracranial pressure had developed due to hypertension and hypeyperfusion caused by dysregulation of cerebral blood flow due to the patient’s high-energy injury and epilepsy. This case report describes several clinical pitfalls, i.e., the patient’s high blood pressure could not be controlled, and a CT examination was not performed during the patient’s status epilepticus and intubation.

1. Definitions

‘Mild head injury’ is defined as head trauma involving a loss of consciousness or amnesia but with normal neurological findings on arrival at a hospital (i.e., GCS 15) [7-13]. High-risk mild head injuries are defined as high-energy injuries such as a fall from a height, a traffic accident, or an assault; trauma-related positive CT scans or the observation of a skull fracture on x-ray are important risk factors [16,22]. Another guideline defines high-energy injury as due mainly to falls from > 3 m [23]. The severity of the injury mechanism is described as an independent risk factor in many studies, and the early detection of intracranial lesions may be life-saving [24,25]. Barlow and Teasdale reported that clinicians involved in the management of head injuries regard the estimated prognosis soon after injury as having an important influence on subsequent management [26]. However, even with sophisticated clinical and radiological technologies, it is not possible to predict a patient’s precise outcome based on the CT images taken a day after the injury, despite sufficiently early and appropriate management [27]. Delayed hematoma was described as a cause of disseminated intravascular clotting and fibrinolysis [27]. Studies presenting the ‘talk and die’ patients tend to be much older and/or taking anticoagulants and coagulopathy was reported to be the strongest prognostic predictor of poor outcome [20,27-29]. Recent meta-analysis including 21 studies estimated of the effect of patient’ risk factors as follow: age, initial glasgow coma scale (GCS), type of injury, and anti-coagulation [30].

2. Imaging

Early CT findings in patients with mild traumatic brain injury are heterogenous but usually consist of an isolated subdural hematoma, isolated SAH, isolated epidural hematoma, or intraparenchymal hematoma or contusion hematoma [10,13,21,29,30]. Combinations
of these are often encountered, but an analysis of pa-

tients with such combinations revealed that among the
cases of all-inclusive subtypes with a GCS score of 13-
15, the isolated subdural hematoma group had worse
outcomes [2,30]. A large proportion of acute traumatic
intraparenchymal contusions and hematomas will pro-
gress; in addition, basal cistern absence, positive midline
shift, and intraventricular hematoma or SAH on the ini-
tial head CT scan were each a strong predictor of early
death [21,29,31].

The massive traumatic SAH in the present case may
have been caused by a traumatic intracranial arteri-
al dissection or pseudoaneurysm which are often ob-
erved proximally in the internal carotid artery at the
supra-clinoidal portion [32,33]. A high-energy head in-
jury that involves immediate shearing force might pro-
duce a pseudoaneurysm or arterial dissection [32,33],
and a fatal rupture could occur a few hours later with
the contribution of abnormal hypertension as in our pa-

tient’s case.

3. Pathophysiology

In the present patient’s case, during the healing pro-
cess of the acute subdural hematoma and chronic sub-
dural hematoma, an abnormal anatomical structure may
have been formed in which pia matter and arachnoid
and/or dura matter may be organized to be one-layer
fibrous tissue that may adherent to the brain tissue. A
large occipitoparietal impact accelerates the hard and
light skull tissue, which moves readily and stops, where-
as soft and heavy brain tissue does not readily move or
stop; a contrecoup hematoma then develops due to
cavitation theory-related negative pressure. In addition,
based on the anatomical abnormality, a large he-
matoma might develop with the aid of hyperperfusion
and hypertension. Immediately following a head injury,
there are several metabolic, hemodynamic, structural,
and electric changes that alter normal cerebral function
[34]. Brain hyperemia appears to play a role in the de-
terioration of some head-injury patients [4,35]. With
regard to cytokines, proinflammatory cytokines play an
important role in regulating autonomic and cardiovas-
cular function in hypertension and heart failure [36]. Pe-
rimpherally administered proinflammatory cytokines such
as tumor necrosis factor-alpha (TNF-α) and interleukin-1
beta (IL-1β) act on the brain to increase the blood pres-
sure, heart rate, and sympathetic nerve activity [36,37].

In the present case, uncontrollable hypertension and a
severe headache were observed; these symptoms might
be due to hyperperfusion and intracranial hypertension.
The patient’s status epilepticus devastated the intracra-
nial condition, finally resulting in the fatal hemorrhage
and massive SAH. Sympathetic hyperactivity occurs in a
subgroup of patients after traumatic brain injury [38].
The rostral ventrolateral medulla (RVLM) is a key region
for the activity of the sympathetic nervous system [38].

4. Medicolegal issues

The potential medico-legal issues involved in the ‘talk
and die’ status have very rarely been discussed [20]. A
few papers in the area of neurosurgical practice describ-
ing how to obtain a fully informed consent have been
published [39,40]. However, practicing neurosurgeons
rarely have the time to explain every potential compli-
cation or unexpected event. Clinical practice guidelines
(CPGs) can in theory provide a vehicle through which
neurosurgeons can more efficiently integrate the most
current evidence into patient management [18]. A ma-
ajor medical malpractice crisis is unfolding in the United
States [40-43], although certain experts stress that most
healthcare errors arise from the faulty systems in which
proficient clinicians work, not from the clinicians them-
selves [41]. Jena, et al. analyzed malpractice data in the
U.S. from 1991 through 2005 for all physicians with a

References

traumatic coma data bank. Part 2: Patients who talk and
deteriorate: Implications for treatment. J Neurosurg 59:
285-288.
of management in thirty-three closed head injury patients
4. Lobato RD, Rivas JJ, Gomez PA, Castaneda M, Canizal
JM, et al. (1991) Head-injured patients who talk and deters-
rionate into coma. Analysis of 211 cases studied with com-
injury patients who talked and deteriorated. Surg Neurol 34:
27-29.
6. Oertel M, Kelly DF, McArthur D, Boscardin WG, Glenn TL,
et al. (2002) Progressive hemorrhage after head trauma:
Predictors and consequences of the evolving injury. J Neu-
B, et al. (2015) Improving hospital quality and costs in non-
operative traumatic brain injury: The role of acute care sur-
8. Carlson AP, Ramirez P, Kennedy G, McLean AR, Mur-
ray-Krezan C, et al. (2010) Low rate of delayed deteriora-
tion requiring surgical treatment in patients transferred to a tertiary care center for mild traumatic brain injury. Neurosurg Focus 29.


