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Introduction
Gliomas are primary brain tumours arising from glial 

cells of the central nervous system (CNS). The World 
Health Organization (WHO) grades gliomas based on 
malignant potential, as determined by histopathological 
features, on a scale from I-IV. Low-grade gliomas (LGG) 
are graded I to II. These tumours have lower malignant 
potential and can be cured by surgery. High-grade 
gliomas (HGG) are graded III to IV. Grade III tumours 
include most anaplastic subtypes whereas grade IV 
tumours are commonly referred to as glioblastoma 
multiforme (GBM). HGGs are malignant, incurable and 
yield a poor prognosis [1,2]. The median overall survival 
of a patient with HGG is approximately 18 months [3].

Research has shown that a greater extent of 
resection improves survival in HGG patients [4]. 
However, a complete resection of tumour remains 
challenging because it is difficult to differentiate 
tumour from normal tissue under standard white-light 
microscopy [5]. Neuronavigation is commonly used 
intra-operatively to aid in tumour resection. It involves 
obtaining an MRI scan prior to surgery that registers 
with the patient using either fiducials or patient surface 
anatomy, providing real-time visual guidance to the 
surgeon. However, there may be imprecision with 
patient registration resulting in inaccuracy of tumour 
location. Additionally, brain shift, the movement of the 
brain during surgery, can render neuronavigation up 
to several centimetres inaccurate [6]. Finally, there is 
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Abstract
High-grade gliomas are aggressive brain tumours with a 
poor prognosis. The current goal of treatment is to achieve 
maximum safe surgical resection as this improves survival. 
However, the infiltrative nature of this cancer makes it difficult 
to delineate healthy from pathological tissue. Therefore, 
complete resection is rarely achieved and there is a high 
rate of tumour recurrence. Additionally, misdiagnosis is 
common and results from unrepresentative tissue sampling. 
This can lead to the initiation of incorrect adjuvant therapies. 
Fluorescence-guided surgery with 5-aminolevulinic acid is 
becoming an increasingly popular practice to address these 
issues. A literature review was conducted to investigate 
whether 5-aminolevulinic acid use can lead to more 
accurate tissue diagnoses and improve the extents of 
resection and survival outcomes among high-grade glioma 
patients. Research suggests that strong tissue fluorescence 
after 5-aminolevulinic acid administration is highly predictive 
of solid tumour whereas weak fluorescence is non-specific 
and may represent areas of infiltrating cancer and anaplasia 
outside of the tumour centre. 5-aminolevulinic acid may be 
more sensitive than peri-operative MRI in demonstrating 
full tumour extent. Resections with 5-aminolevulinic are 
more complete than those without due to better tumour 
boundary delineation. The effects of 5-aminolevulinic acid 
may be enhanced with intra-operative MRI. Surgery with 
5-aminolevulinic acid may offer a survival advantage, but 
larger trials are still required to quantify the impact.
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The surge in popularity can largely be attributed 
to a phase III randomized trial by Stummer, et al. 
which provided level 2b evidence that greater tumour 
resection and improved progression-free survival (PFS) 
can be achieved among HGG patients who undergo 
resection with 5-ALA compared to those undergoing 
conventional white-light resection [17]. Other papers 
have also shown that 5-ALA is able to identify tumour 
tissue with very high predictive values [18,19]. The aim 
of this review is to elucidate the evolving role 5-ALA 
in influencing the histopathological grading, extent of 
resection and survival outcomes in HGGs.

Methods
A literature search of the EBSCO database was 

conducted using the terms “5-ALA” OR “5-aminoevulinic 
acid” AND “glioma surgery”. 222 studies were screened 
against the criteria below. Relevant studies were also 
attained from the references of screened papers. A 
total of 14 studies met the inclusion criteria and were 
included in the review.

Inclusion criteria

Studies were selected if they were published after 
2005 and before July 2023 and whose primary outcome 
evaluated the role of 5-ALA, alone or in combination with 
other surgical adjuncts, in identifying representative 
tumor tissue or influencing the extent of resection 
(EOR) in adult patients with new or recurrent gliomas. 
Any survival outcomes reported in these papers were 
included in this review to help determine whether 
the use of 5-ALA impacts on survival. There were no 
restrictions regarding language published in, study 
timeframe or sample sizes.

Exclusion criteria

Articles were excluded if they involved letters to the 
editor, pediatric patients (< 18 years), did not have full-
text access, described the use of 5-ALA in non-glioma 
or low grade-glioma surgery, were duplicates, case-
reports, or animal studies.

mounting evidence to suggest that full tumour extent 
is underestimated on contrast imaging, shedding doubt 
on the reliability of peri-operative scanning in achieving 
maximal surgical resection [7-9].

After surgery, it is imperative that correct adjuvant 
therapies are initiated as this has also been shown to 
positively impact survival [10]. The type of adjuvant 
therapy depends on tumour grade. Non-diagnostic 
samples represent up to 24% of all stereotactic HGGs 
biopsy specimens, once again resulting from inaccuracies 
with neuronavigation [11,12]. This may potentially 
lead to tumour under-grading and delayed initiation of 
correct adjuvant treatment [13]. To counter this, serial 
biopsies are often required but this is associated with an 
increased risk of morbidity and mortality. Intraoperative 
neuropathological assessment can also be used but is 
time-consuming and not widely available [14].

The use of 5-aminolevulinic acid (5-ALA) has shown 
promise in addressing these issues. 5-ALA is a natural 
metabolite in the haemoglobin metabolic pathway. 
When exogenous 5-ALA is administered orally pre-
operatively, it acts as a pro-agent with excellent 
penetration of the BBB. It accumulates preferentially 
in malignant glial cells due to reduced levels of 
ferrochelatase (mitochondrial enzyme involved in the 
final stage of haem synthesis) as well as selective uptake 
by an ATP-binding cassette transporter (ABCB6). Once 
5-ALA has accumulated intracellularly, it is metabolized 
into the fluorescent metabolite, protoporphyrin IX 
(PpIX). PpIX provides violet-red fluorescence when 
visualized under blue-violet light intra-operatively [13]. 
Fluorescence of cancer tissue can range from light pink 
to deep red depending on cellular density, tumour 
proliferation, neovascularity and BBB permeability. 
Generally, the denser the tumour tissue, the darker the 
fluorescence [15]. The practice of fluorescent-guided 
surgery (FGS) with 5-aminolevulinic acid has increased 
dramatically over the last decade. 5-ALA is now 
approved for use as an optical-imaging agent in Europe, 
Asia, Australia and most recently USA [16].

Table 1: Characteristics of studies evaluating the clinical value of PpIX fluorescence in identifying representative HGG tissue, as 
defined by neuroimaging ± histopathological criteria, in stereotactic biopsies or resections of suspected high-grade brain tumours.

Study Sample size Sensitivity (%) Specificity (%) NPV (%) PPV (%)
Piquer, et al. [20] 8 73 100 63 100

Widhalm, et al. [11] 33 100 80 100 91.9

Von Campe, et al. [21] 13 100 100 100 100

Widhalm, et al. [8] 26 88 89 91 85

Coburger, et al. [7] 34 91 80 22 99

Stummer, et al. [19] 33 - - 39.5 96.2 

Roessler, et al. [9] 10 - - - 100

Díez Valle, et al. [18] 36 92.2 92.3 66.6 98.6

PpIX: Protoporphyrin IX; HGG: High-grade gliomas (WHO grade ≥ 3); NPV: Negative Predictive Value; PPV: Positive Predictive 
Value; Lggs: Low-Grade Gliomas
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identification [7,20,25,27,28]. This was demonstrated 
by Panciani, et al., who found improved sensitivity in 
detecting HGG tissue when 5-ALA and neuronavigation 
are used together [28].

Extent of resection with 5-ALA is greater in newly 
diagnosed and recurrent HGGs compared to those 
without [17,23,27,29]. This is because 5-ALA enhances 
tumour visualization to beyond what can be detected 
under conventional white-light microscopy or pre-
operative contrast MRI [29-31]. In a meta-analysis 
involving 565 patients with GBM who had tumour 
resection with 5-ALA, Eljamel found a gross total resection 
(GTR) > 98% in 75.4% of patients [31]. This compares 
favourably to an expected GTR > 98% in less than 50% 
of those operated on under white-light microsurgery 
[31,32]. 5-ALA also maximizes resection of eloquent-
area HGGs; however, these resections are still often sub-
total due to risk of neurological injury [18,22,23,27,33]. 
Authors recommend combining 5-ALA use with other 
adjuncts such as neurophysiological monitoring, iMRI 
or awake surgery, as this increases chances of safely 
achieving CRET in newly diagnosed and recurrent HGGs 
[18,22-25,27]. Despite greater extents of resection with 
5-ALA, post-operative morbidity and mortality does not 
seem to be significantly increased [9,18,20,22,24,27]. 
Moreover, 5-ALA is associated with no or only minor 
adverse effects such as thrombocytopoenia, a rise in 
liver enzymes, skin flushing and pruritis [8,20,24].

Greater extents of resection lead to improved 
overall survival in HGG patients. Although 5-ALA leads 
to greater extents of resection, meta-analyses have 
demonstrated only modest survival benefits with 5-ALA 
[5,31]. This is likely due to an abundance of low-quality 
evidence with small sample sizes. Larger randomized-
control studies focusing on post-operative survival are 
required to quantify any meaningful effect of 5-ALA on 
survival [5,18,22,26,27].

Conclusion
5-ALA in FGS is a safe and practical method of 

visualizing HGG tissue in real-time that is independent of 
brain-shift. Strong PpIX fluorescence is highly predictive 
of HGG tissue, whereas vague fluorescence may suggest 
cancer tissue outside of the tumour centre. Importantly, 
5-ALA can pick up on tumour foci showing no obvious 
contrast enhancement on MRI. The implications of this 
are more representative tissue sampling and extended 
tumour resections compared to surgery without 5-ALA. 
These effects may be augmented when used alongside 
intra-operative MRI. The greater resections with 5-ALA 
may offer some survival advantage; larger studies are 
required to quantify this measure.
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Results
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Discussion
5-ALA can identify HGG tissue with very high PPV 

values thus reducing the chance of obtaining a negative 
biopsy. PPV correlates with the degree of fluorescence, 
such that stronger fluorescing areas are very likely to 
represent HGG tissue [7,8,11,18-21]. The reliability of 
strong PpIX fluorescence as a marker of cancer should 
provide surgeons performing stereotactic brain biopsies 
with enough confidence to take as few samples as 
possible from these sites to reduce procedure-related 
morbidity and maximize diagnostic yield. Strong PpIX 
fluorescence may also negate the need for intra-
operative histopathology, thus helping to reduce overall 
procedure time and cost [11,20,21].

On the other hand, vaguely or non-fluorescing areas 
are much more non-specific, representing a range of 
possible tissue diagnoses including infiltrating tumour, 
LGG tissue, gliosis or radionecrosis [9,11,18,19,21,25]. 
In these cases, serial biopsies, intra-operative 
histopathology, and even iMRI are recommended for 
accurate tissue diagnosis [11,21]. However, the value of 
vague PpIX fluorescence should not be underestimated; 
these areas may represent tumour infiltration into 
normal tissue [18,19]. Surgeons can achieve a safe and 
“supramaximal” resection by resecting these areas 
if non-eloquent. If vague fluorescence extends into 
eloquent cortex, surgery could proceed cautiously with 
neurophysiological monitoring [18,22,25,27].

5-ALA has advantages over peri-operative MRI in 
accurately detecting representative HGG tissue. For 
example, Widhalm, et al. demonstrated a correlation 
between intra-operative PpIX fluorescence in diffusely 
infiltrating gliomas without significant contrast 
enhancement and degree of anaplasia [8]. Coburger, 
et al. demonstrated higher sensitivity and specificity of 
PpIX fluorescence in detecting residual HGG tissue at the 
border zone post-resection compared to iMRI [7]. Areas 
of residual tumour may act as foci for future tumour 
recurrence; without 5-ALA, these foci could be missed if 
iMRI is used alone [7-9]. Additional studies support the 
claim that 5-ALA is superior to contrast enhancement 
on post-operative MRI in detecting residual tumour 
[18,19].

On the other hand, Quick-Weller, et al. demonstrated 
that iMRI can identify recurrent HGG tissue that does not 
fluoresce with 5-ALA intra-operatively [25]. In another 
study by Coburger, et al., the group demonstrated a lower 
rate of residual PpIX fluorescence post HGG resection 
than post-operative contrast enhancement on MRI [27]. 
The implications of these studies are not to rely on one 
technique over the other; merely that both techniques 
can be used together, if possible, to maximize tumour 
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