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females have many Kisspeptin neurons in the AVPV 
[2]. It also reflects the morphological differences, such 
as the amount of cell bodies and fiber density that 
influence higher input to GnRH neurons in females. In 
females, the presence of sex hormones stimulates Kiss1 
expression as the cellular basis for estrogen’s positive 
feedback stimulation of the preovulatory GnRH surge 
[2]. We need to better understand the influence of 
Kisspeptin in the switching mechanism affected by the 
steroid hormones from negative to positive feedback, 
which does not exist in males, not only differentiating 
Kisspeptin morphologically (Table 1).

The Hypothalamic
In males and females, GnRH neurons are directly 

activated by kisspeptin, produced in the hypothalamus 
and thought to affect GnRH activity differently. The 
Kisspeptin 1 gene strongly stimulates GnRH secretion 
[14]. But the amount of Kisspeptin differs between men 
and women is unclear. Both sexes have the mechanism 
of GnRH pulsatility, which is thought to be regulated by 
ARC and AVPV nuclei [15].

In females, GnRH surge is known to be LH triggered, 
which will cause the LH surge. In males, the GnRH-LH 
surge may not occur due to the absence of estrogen 
and estrogen-sensitive cells [2,16]. Other studies 
found Kisspeptin cell bodies in the AVPV act as LH 
surge generator, while KNDy neurons in the ARC as 
pulse generators [3]. Different neurons and regions 
of kisspeptin stimulus will affect the GnRH function. 
Hence, the LH surge activity only happens in females 
(Table 1).

Introduction
Human sexual development starts early in fetal life 

and is completed in adulthood when the gonads have 
developed to their full reproductive potential. The HPG 
axis is a highly complex unit that influences fertility 
success in men and women [1]. The development, 
structure, and function of the HPG axis between males 
and females will be compared and differentiated below 
(Table 1) [2-8].

The Hypothalamus-Pituitary-Gonads Axis
In both sexes, the physiological link of the HPG 

axis initiated when the hypothalamic peptide (GnRH) 
released into the anterior pituitary, triggers the 
production of gonadotrophins (LH and FSH), then 
stimulates spermatogenesis in males or oogenesis 
in females by binding to the gonad’s receptors which 
then release estrogen, progesterone, testosterone, and 
inhibins [1,4]. Complex feedback loops control the HPG 
axis’s principal hormone production process in males 
and females are shown in Figure 1 [2,3,9-13].

Regarding similarity, male and female hormone 
productions were initially influenced by the tonic 
release of kisspeptin by the arcuate and anteroventral 
periventral kisspeptin neuron, along with neurokinin B 
and dynorphin [9]. However, we believe there must be 
a gap of knowledge in terms of Kisspeptin production 
in males and females since the GnRH surge mechanism 
only exists in females.

The fundamental difference between both sexes 
was that males have very few Kisspeptin neurons, while 
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Table 1: Comparison of HPG axis of Males and Females.

Axis Males Females
Hypothalamus

Kisspeptin Level [2] + +++

Activity [3] GnRH pulsatile GnRH pulsatile and GnRH surge

Feedback [4] Negative by Testosterone Positive by estradol

Negative by estradiol and progesterone

Pituitary
Size [5] Smaller size Bigger size

LH surge [2] Absence Exist

Feedback [6] Negative by Testosteron Positive by estradiol

Negative by estradiol and progesterone

Gonads [7,8]
Organ Testis Ovary

Location Inside scrotum Inside pelvic

Gonadal process Spermatogenesis Oogenesis

Main unit Seminiferous tubule Follicle

Activity Continuous Periodically

Duration of process 72 days 28-35 days

End product Sperm Oocyte

Amount of product Numerous 1-2 oocyte release

Hormones Testosteron Estrogen and Progesteron

LH receptor location Leydig Cells Internal theca cells, Granulosa cells

Puberty sign Nocturnal emission Menarche (first menstruation)

Gametogenesis Continuous Periodical ovulation until menopause

Differences in structure and function of both sexes regarding reproductive organs (hypothalamic, pituitary and gonads [2-8]

and neurohypophysis. Gonadotrophs are pituitary gland 
cells with GnRH receptors and generate FSH and LH in 
males and females.

In both sexes, LH and FSH are made up of general α 
and specific β subunits essential for the heterodimer’s 
biological activity. The variable size and electron density 
of gonadotrophic secretory granules distinguish them. 
The granule population in males rat gonadotroph is 
unique, while females rat gonadotroph has less diversity 
in secretory granules [26].

The size of the hypophysis gland is more extensive 
in females than in males. The hypophysis reaches the 
maximum size under hormonally active situations such 
as pregnancy and puberty. Study shows that the median 
height of the hypophysis gland under a year and the 
18-year-old group was 3.81 ± 0.68 and 8.48 ± 1.08 mm 
for girls and boys was 3.91 ± 0.75 and 6.19 ± 0.88 mm. In 
terms of size, this might occur due to LH hypersecretion 
[27-29].

Gametogenesis and Steroidogenesis
The FSH and LH affect both ovaries and testes 

differently regarding steroid and gametes production. 
In terms of gametogenesis, FSH plays an essential 
role in both sexes. In females, FSH promotes follicular 

In females, The AVPV is the focus of positive 
feedback from estrogen while the ARC is the strong 
target of estrogen’s negative feedback [17-19]. 
Estrogen's stimulatory effects on the surge mechanism 
are assumed to be mediated by Era which expressed 
by nearly all Kiss1 neurons, and only females have 
significant amounts of Kiss1 cells [2]. Estrogen can 
stimulate ovulation and LH secretion in females [2,20].

Kiss 1 cells are more prominent in females than in 
males [16,21]. Kisspeptin fibers in the AVPV of sexually 
mature females are 15-fold higher in mice than in 
rats [22,23] (Figure 2). It was found by the amount 
and distribution of immunolabelled kisspeptin in the 
infundibulum, which is higher in women [24].

Kisspeptin from Kiss 1 neurons induce GnRH 
secretion. The amount of kisspeptin generated 
differently is higher in female than male along with the 
sex hormones regulations.

The Pituitary: LH and FSH
The pituitary or hypophysis gland is crucial in 

neuroendocrine control, comprised of various cell types 
that release hormones in blood circulation in both 
sexes [25]. The pituitary gland is located underneath 
the hypothalamus and is divided into adenohypophysis 
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(Image created with Biorender.com, adapted from Ozawa 2021)
Figure 1: Schematic of the different hormone production pathways of male and female Hypothalamic-pituitary-gonadal 
(HPG) axis.  Kiss 1 neurons in ARC offer tonic stimulatory input to GnRH neurons which are adversely controlled by sex 
steroids. AVPV sex steroids activate Kiss 1 neurons. Trans-synaptic and glial inputs trigger GnRH release in the hypophysial 
bloodstream. GnRH modulates LH and FSH, which stimulate ovarian and testicular development. LH activates theca cells 
in females, which generate estrogen, primarily estradiol. FSH act on granulosa cells that modulate the aromatase. In the 
ovary, the corpus luteum release progesterone, which, together with estrogen, provides positive and negative feedback 
to the pituitary and hypothalamus. LH stimulates testosterone production in Leydig cells in males, negatively affecting the 
hypothalamus and pituitary. Testosterone is metabolized further to dihydrotestosterone and estradiol, negatively affecting 
the hypothalamus and pituitary. While FSH act on Sertoli cells that stimulate spermatogenesis [2,3.9-13].

         

(Image created with Biorender.com, adapted from Kauffman, 2007)
Figure 2: The schematic comparison of the Kisspeptin pathway in GnRH stimulation of male and female. Kisspeptin from 
Kiss 1 neurons induce GnRH secretion. The amount of kisspeptin generated differently is higher in female than male along 
with the sex hormones regulations [2,15].
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maturation and granulosa cell estrogen synthesis. In 
steroidogenesis, FSH attaches to FSH receptors on 
granulosa cells causing androgens production in internal 
theca cells to aromatize estrogens [25]. In contrast with 
males, after FSH stimulates the synthesis of androgen 
receptors, inhibin production and calcium signaling on 
FSH receptors will stimulate spermatogenesis on Sertoli 
cells [6] (Figure 1).

LH has an essential role in steroidogenesis. In females, 
LH promotes theca cell androgen production to cause 
ovulation and maintains corpus luteum progesterone 
production [26]. On internal theca cells, LH binds in the 
early follicular phase to LH-receptor surface, increasing 
androgen synthesis (androstenedione, testosterone) 
and follicle development [6]. In males, LH binds 
exclusively to Leydig cells (LH receptors) to stimulate 
testosterone synthesis, whereas prolactin and inhibin 
may function simultaneously to boost LH production.

As explained earlier, GnRH/LH surge marks the 
difference between both sexes. In females, LH pulses 
change every 90-100 minutes to every 4-8 hours from 
the early follicular phase to the late luteal phase [6]. 
While in males, LH pulses occur every 55 minutes in 
mature males, testosterone is the primary driving factor 

that governs LH synthesis, either directly or indirectly, 
via aromatization to estradiol [6] (Figure 3 and Figure 
4) [30-32].

The Gonads: Spermatogenesis and Oogonesis
The meiotic phase between both processes 

distinguishes oogenesis from spermatogenesis in males 
and females. In males, the process is continuous without 
following episodic hormonal phases. In females, in the 
dictyate stage of meiosis I until LH promotes ultimate 
oocyte maturation which is periodically according to 
the hormonal phases [5]. In males, spermatogenesis 
takes 74 days in the testicular seminiferous tubules 
to complete SSC differentiation: mitosis, meiosis, and 
spermiogenesis [7], while In females, it takes 28-35 
days for a cycle through different phases, and only one 
dominant follicle is produced [33,34].

In spermatogenesis, spermatogonia are 
undifferentiated, capable of self-renewal and 
differentiation into A-paired (Ap) spermatogonia. 
A-aligned (Aal) spermatogonia develop through 
sequential mitosis. Sertoli cell-derived, FSH-induced 
growth factors [7]. While in female oogenesis, the 
mitotic process occur before birth and undergoes an 
arrest in prophase I. In contrast to males, which mitotic 

         

(Image created with Biorender.com, adapted from Duraijayanagam, 2015)
Figure 3: The schematic comparison of meiotic phases in Spermatogenesis in males and Oogenesis in females.
In this Oogenesis phase, the periodical process of oocyte production through females life and the meiosis stages of 
oocytes also the sex steroid produced has been the complete difference to the spermatogenesis process [30,31].
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testes), sex steroids (estrogen and testosterone), 
number of gametes produced (oocyte and sperms), and 
duration (periodical and continuous process) see (Table 
1).
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